| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-id |
|- _I = { <. x , y >. | x = y } |
| 2 |
|
equcomi |
|- ( x = y -> y = x ) |
| 3 |
2
|
opeq2d |
|- ( x = y -> <. x , y >. = <. x , x >. ) |
| 4 |
3
|
eqeq2d |
|- ( x = y -> ( z = <. x , y >. <-> z = <. x , x >. ) ) |
| 5 |
4
|
pm5.32ri |
|- ( ( z = <. x , y >. /\ x = y ) <-> ( z = <. x , x >. /\ x = y ) ) |
| 6 |
5
|
exbii |
|- ( E. y ( z = <. x , y >. /\ x = y ) <-> E. y ( z = <. x , x >. /\ x = y ) ) |
| 7 |
|
ax6evr |
|- E. y x = y |
| 8 |
|
19.42v |
|- ( E. y ( z = <. x , x >. /\ x = y ) <-> ( z = <. x , x >. /\ E. y x = y ) ) |
| 9 |
7 8
|
mpbiran2 |
|- ( E. y ( z = <. x , x >. /\ x = y ) <-> z = <. x , x >. ) |
| 10 |
6 9
|
bitri |
|- ( E. y ( z = <. x , y >. /\ x = y ) <-> z = <. x , x >. ) |
| 11 |
10
|
exbii |
|- ( E. x E. y ( z = <. x , y >. /\ x = y ) <-> E. x z = <. x , x >. ) |
| 12 |
|
id |
|- ( x = u -> x = u ) |
| 13 |
12 12
|
opeq12d |
|- ( x = u -> <. x , x >. = <. u , u >. ) |
| 14 |
13
|
eqeq2d |
|- ( x = u -> ( z = <. x , x >. <-> z = <. u , u >. ) ) |
| 15 |
14
|
exexw |
|- ( E. x z = <. x , x >. <-> E. x E. x z = <. x , x >. ) |
| 16 |
11 15
|
bitri |
|- ( E. x E. y ( z = <. x , y >. /\ x = y ) <-> E. x E. x z = <. x , x >. ) |
| 17 |
|
tru |
|- T. |
| 18 |
17
|
biantru |
|- ( z = <. x , x >. <-> ( z = <. x , x >. /\ T. ) ) |
| 19 |
18
|
exbii |
|- ( E. x z = <. x , x >. <-> E. x ( z = <. x , x >. /\ T. ) ) |
| 20 |
19
|
exbii |
|- ( E. x E. x z = <. x , x >. <-> E. x E. x ( z = <. x , x >. /\ T. ) ) |
| 21 |
16 20
|
bitri |
|- ( E. x E. y ( z = <. x , y >. /\ x = y ) <-> E. x E. x ( z = <. x , x >. /\ T. ) ) |
| 22 |
21
|
abbii |
|- { z | E. x E. y ( z = <. x , y >. /\ x = y ) } = { z | E. x E. x ( z = <. x , x >. /\ T. ) } |
| 23 |
|
df-opab |
|- { <. x , y >. | x = y } = { z | E. x E. y ( z = <. x , y >. /\ x = y ) } |
| 24 |
|
df-opab |
|- { <. x , x >. | T. } = { z | E. x E. x ( z = <. x , x >. /\ T. ) } |
| 25 |
22 23 24
|
3eqtr4i |
|- { <. x , y >. | x = y } = { <. x , x >. | T. } |
| 26 |
1 25
|
eqtri |
|- _I = { <. x , x >. | T. } |