Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) (Proof shortened by BJ, 22-Jul-2023)
TODO: move to the main section when one can reorder sections so that we can use relopab (this is a very limited reordering).
Ref | Expression | ||
---|---|---|---|
Assertion | bj-0nelopab | |- -. (/) e. { <. x , y >. | ph } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab | |- Rel { <. x , y >. | ph } |
|
2 | 0nelrel0 | |- ( Rel { <. x , y >. | ph } -> -. (/) e. { <. x , y >. | ph } ) |
|
3 | 1 2 | ax-mp | |- -. (/) e. { <. x , y >. | ph } |