Metamath Proof Explorer


Theorem bj-0nelopab

Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) (Proof shortened by BJ, 22-Jul-2023)

TODO: move to the main section when one can reorder sections so that we can use relopab (this is a very limited reordering).

Ref Expression
Assertion bj-0nelopab ¬ x y | φ

Proof

Step Hyp Ref Expression
1 relopab Rel x y | φ
2 0nelrel0 Rel x y | φ ¬ x y | φ
3 1 2 ax-mp ¬ x y | φ