Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) (Proof shortened by BJ, 22-Jul-2023)
TODO: move to the main section when one can reorder sections so that we can use relopab (this is a very limited reordering).
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-0nelopab | ⊢ ¬ ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relopab | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 2 | 0nelrel0 | ⊢ ( Rel { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → ¬ ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) | |
| 3 | 1 2 | ax-mp | ⊢ ¬ ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |