| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nelrel0 |
⊢ ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 ) |
| 2 |
|
jcn |
⊢ ( 𝐴 𝑅 𝐵 → ( ¬ ∅ ∈ 𝑅 → ¬ ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) ) ) |
| 3 |
2
|
impcom |
⊢ ( ( ¬ ∅ ∈ 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ¬ ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) ) |
| 4 |
|
opprc |
⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 〈 𝐴 , 𝐵 〉 = ∅ ) |
| 5 |
|
df-br |
⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
| 6 |
5
|
biimpi |
⊢ ( 𝐴 𝑅 𝐵 → 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
| 7 |
|
eleq1 |
⊢ ( 〈 𝐴 , 𝐵 〉 = ∅ → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ ∅ ∈ 𝑅 ) ) |
| 8 |
6 7
|
imbitrid |
⊢ ( 〈 𝐴 , 𝐵 〉 = ∅ → ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) ) |
| 9 |
4 8
|
syl |
⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) ) |
| 10 |
3 9
|
nsyl2 |
⊢ ( ( ¬ ∅ ∈ 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 11 |
1 10
|
sylan |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |