| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nelrel0 | ⊢ ( Rel  𝑅  →  ¬  ∅  ∈  𝑅 ) | 
						
							| 2 |  | jcn | ⊢ ( 𝐴 𝑅 𝐵  →  ( ¬  ∅  ∈  𝑅  →  ¬  ( 𝐴 𝑅 𝐵  →  ∅  ∈  𝑅 ) ) ) | 
						
							| 3 | 2 | impcom | ⊢ ( ( ¬  ∅  ∈  𝑅  ∧  𝐴 𝑅 𝐵 )  →  ¬  ( 𝐴 𝑅 𝐵  →  ∅  ∈  𝑅 ) ) | 
						
							| 4 |  | opprc | ⊢ ( ¬  ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  〈 𝐴 ,  𝐵 〉  =  ∅ ) | 
						
							| 5 |  | df-br | ⊢ ( 𝐴 𝑅 𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  𝑅 ) | 
						
							| 6 | 5 | biimpi | ⊢ ( 𝐴 𝑅 𝐵  →  〈 𝐴 ,  𝐵 〉  ∈  𝑅 ) | 
						
							| 7 |  | eleq1 | ⊢ ( 〈 𝐴 ,  𝐵 〉  =  ∅  →  ( 〈 𝐴 ,  𝐵 〉  ∈  𝑅  ↔  ∅  ∈  𝑅 ) ) | 
						
							| 8 | 6 7 | imbitrid | ⊢ ( 〈 𝐴 ,  𝐵 〉  =  ∅  →  ( 𝐴 𝑅 𝐵  →  ∅  ∈  𝑅 ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( ¬  ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴 𝑅 𝐵  →  ∅  ∈  𝑅 ) ) | 
						
							| 10 | 3 9 | nsyl2 | ⊢ ( ( ¬  ∅  ∈  𝑅  ∧  𝐴 𝑅 𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 11 | 1 10 | sylan | ⊢ ( ( Rel  𝑅  ∧  𝐴 𝑅 𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) |