Metamath Proof Explorer


Theorem bj-brrelex12ALT

Description: Two classes related by a binary relation are both sets. Alternate proof of brrelex12 . (Contributed by BJ, 14-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-brrelex12ALT ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 0nelrel0 ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 )
2 jcn ( 𝐴 𝑅 𝐵 → ( ¬ ∅ ∈ 𝑅 → ¬ ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) ) )
3 2 impcom ( ( ¬ ∅ ∈ 𝑅𝐴 𝑅 𝐵 ) → ¬ ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) )
4 opprc ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⟨ 𝐴 , 𝐵 ⟩ = ∅ )
5 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
6 5 biimpi ( 𝐴 𝑅 𝐵 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
7 eleq1 ( ⟨ 𝐴 , 𝐵 ⟩ = ∅ → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ∅ ∈ 𝑅 ) )
8 6 7 syl5ib ( ⟨ 𝐴 , 𝐵 ⟩ = ∅ → ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) )
9 4 8 syl ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝑅 𝐵 → ∅ ∈ 𝑅 ) )
10 3 9 nsyl2 ( ( ¬ ∅ ∈ 𝑅𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
11 1 10 sylan ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )