Metamath Proof Explorer


Theorem bj-brrelex12ALT

Description: Two classes related by a binary relation are both sets. Alternate proof of brrelex12 . (Contributed by BJ, 14-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-brrelex12ALT
|- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 0nelrel0
 |-  ( Rel R -> -. (/) e. R )
2 jcn
 |-  ( A R B -> ( -. (/) e. R -> -. ( A R B -> (/) e. R ) ) )
3 2 impcom
 |-  ( ( -. (/) e. R /\ A R B ) -> -. ( A R B -> (/) e. R ) )
4 opprc
 |-  ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) )
5 df-br
 |-  ( A R B <-> <. A , B >. e. R )
6 5 biimpi
 |-  ( A R B -> <. A , B >. e. R )
7 eleq1
 |-  ( <. A , B >. = (/) -> ( <. A , B >. e. R <-> (/) e. R ) )
8 6 7 syl5ib
 |-  ( <. A , B >. = (/) -> ( A R B -> (/) e. R ) )
9 4 8 syl
 |-  ( -. ( A e. _V /\ B e. _V ) -> ( A R B -> (/) e. R ) )
10 3 9 nsyl2
 |-  ( ( -. (/) e. R /\ A R B ) -> ( A e. _V /\ B e. _V ) )
11 1 10 sylan
 |-  ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) )