| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nelrel0 |  |-  ( Rel R -> -. (/) e. R ) | 
						
							| 2 |  | jcn |  |-  ( A R B -> ( -. (/) e. R -> -. ( A R B -> (/) e. R ) ) ) | 
						
							| 3 | 2 | impcom |  |-  ( ( -. (/) e. R /\ A R B ) -> -. ( A R B -> (/) e. R ) ) | 
						
							| 4 |  | opprc |  |-  ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) | 
						
							| 5 |  | df-br |  |-  ( A R B <-> <. A , B >. e. R ) | 
						
							| 6 | 5 | biimpi |  |-  ( A R B -> <. A , B >. e. R ) | 
						
							| 7 |  | eleq1 |  |-  ( <. A , B >. = (/) -> ( <. A , B >. e. R <-> (/) e. R ) ) | 
						
							| 8 | 6 7 | imbitrid |  |-  ( <. A , B >. = (/) -> ( A R B -> (/) e. R ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( -. ( A e. _V /\ B e. _V ) -> ( A R B -> (/) e. R ) ) | 
						
							| 10 | 3 9 | nsyl2 |  |-  ( ( -. (/) e. R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 11 | 1 10 | sylan |  |-  ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |