| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nelrel0 |
|- ( Rel R -> -. (/) e. R ) |
| 2 |
|
jcn |
|- ( A R B -> ( -. (/) e. R -> -. ( A R B -> (/) e. R ) ) ) |
| 3 |
2
|
impcom |
|- ( ( -. (/) e. R /\ A R B ) -> -. ( A R B -> (/) e. R ) ) |
| 4 |
|
opprc |
|- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
| 5 |
|
df-br |
|- ( A R B <-> <. A , B >. e. R ) |
| 6 |
5
|
biimpi |
|- ( A R B -> <. A , B >. e. R ) |
| 7 |
|
eleq1 |
|- ( <. A , B >. = (/) -> ( <. A , B >. e. R <-> (/) e. R ) ) |
| 8 |
6 7
|
imbitrid |
|- ( <. A , B >. = (/) -> ( A R B -> (/) e. R ) ) |
| 9 |
4 8
|
syl |
|- ( -. ( A e. _V /\ B e. _V ) -> ( A R B -> (/) e. R ) ) |
| 10 |
3 9
|
nsyl2 |
|- ( ( -. (/) e. R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
| 11 |
1 10
|
sylan |
|- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |