Metamath Proof Explorer


Theorem bj-equsexvwd

Description: Variant of equsexvw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-equsexvwd.nf0 φxφ
bj-equsexvwd.nf φℲ'xχ
bj-equsexvwd.is φx=yψχ
Assertion bj-equsexvwd φxx=yψχ

Proof

Step Hyp Ref Expression
1 bj-equsexvwd.nf0 φxφ
2 bj-equsexvwd.nf φℲ'xχ
3 bj-equsexvwd.is φx=yψχ
4 alinexa xx=y¬ψ¬xx=yψ
5 bj-nnfnt Ⅎ'xχℲ'x¬χ
6 2 5 sylib φℲ'x¬χ
7 3 notbid φx=y¬ψ¬χ
8 1 6 7 bj-equsalvwd φxx=y¬ψ¬χ
9 4 8 bitr3id φ¬xx=yψ¬χ
10 9 con4bid φxx=yψχ