Metamath Proof Explorer


Theorem bj-imdirval

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval.1 φ A U
bj-imdirval.2 φ B V
Assertion bj-imdirval Could not format assertion : No typesetting found for |- ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-imdirval.1 φ A U
2 bj-imdirval.2 φ B V
3 df-imdir Could not format ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) : No typesetting found for |- ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) with typecode |-
4 1 2 3 bj-imdirvallem Could not format ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) : No typesetting found for |- ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) with typecode |-