Metamath Proof Explorer


Theorem bj-imdirval

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval.1 φ A U
bj-imdirval.2 φ B V
Assertion bj-imdirval φ A 𝒫 * B = r 𝒫 A × B x y | x A y B r x = y

Proof

Step Hyp Ref Expression
1 bj-imdirval.1 φ A U
2 bj-imdirval.2 φ B V
3 df-imdir 𝒫 * = a V , b V r 𝒫 a × b x y | x a y b r x = y
4 1 2 3 bj-imdirvallem φ A 𝒫 * B = r 𝒫 A × B x y | x A y B r x = y