Metamath Proof Explorer


Theorem bj-imdirval

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval.1 ( 𝜑𝐴𝑈 )
bj-imdirval.2 ( 𝜑𝐵𝑉 )
Assertion bj-imdirval ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑟𝑥 ) = 𝑦 ) } ) )

Proof

Step Hyp Ref Expression
1 bj-imdirval.1 ( 𝜑𝐴𝑈 )
2 bj-imdirval.2 ( 𝜑𝐵𝑉 )
3 df-imdir 𝒫* = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ ( 𝑟𝑥 ) = 𝑦 ) } ) )
4 1 2 3 bj-imdirvallem ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑟𝑥 ) = 𝑦 ) } ) )