| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirvallem.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 2 |  | bj-imdirvallem.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | bj-imdirvallem.df | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  𝜓 ) } ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  𝜓 ) } ) ) ) | 
						
							| 5 |  | xpeq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ×  𝑏 )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 6 | 5 | pweqd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 8 |  | sseq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑥  ⊆  𝑎  ↔  𝑥  ⊆  𝐴 ) ) | 
						
							| 9 |  | sseq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑦  ⊆  𝑏  ↔  𝑦  ⊆  𝐵 ) ) | 
						
							| 10 | 8 9 | bi2anan9 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) ) ) | 
						
							| 11 | 10 | anbi1d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  𝜓 )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) ) ) | 
						
							| 12 | 11 | opabbidv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  𝜓 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) } ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  𝜓 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) } ) | 
						
							| 14 | 7 13 | mpteq12dv | ⊢ ( ( 𝜑  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  𝜓 ) } )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) } ) ) | 
						
							| 15 | 1 | elexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 16 | 2 | elexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 17 | 1 2 | xpexd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 18 | 17 | pwexd | ⊢ ( 𝜑  →  𝒫  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 19 | 18 | mptexd | ⊢ ( 𝜑  →  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) } )  ∈  V ) | 
						
							| 20 | 4 14 15 16 19 | ovmpod | ⊢ ( 𝜑  →  ( 𝐴 𝐶 𝐵 )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) } ) ) |