Metamath Proof Explorer


Theorem bj-imdirvallem

Description: Lemma for bj-imdirval and bj-iminvval . (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-imdirvallem.1 ( 𝜑𝐴𝑈 )
bj-imdirvallem.2 ( 𝜑𝐵𝑉 )
bj-imdirvallem.df 𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) } ) )
Assertion bj-imdirvallem ( 𝜑 → ( 𝐴 𝐶 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ) )

Proof

Step Hyp Ref Expression
1 bj-imdirvallem.1 ( 𝜑𝐴𝑈 )
2 bj-imdirvallem.2 ( 𝜑𝐵𝑉 )
3 bj-imdirvallem.df 𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) } ) )
4 3 a1i ( 𝜑𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) } ) ) )
5 xpeq12 ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( 𝑎 × 𝑏 ) = ( 𝐴 × 𝐵 ) )
6 5 pweqd ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) )
7 6 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝐴𝑏 = 𝐵 ) ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) )
8 sseq2 ( 𝑎 = 𝐴 → ( 𝑥𝑎𝑥𝐴 ) )
9 sseq2 ( 𝑏 = 𝐵 → ( 𝑦𝑏𝑦𝐵 ) )
10 8 9 bi2anan9 ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( ( 𝑥𝑎𝑦𝑏 ) ↔ ( 𝑥𝐴𝑦𝐵 ) ) )
11 10 anbi1d ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) ) )
12 11 opabbidv ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } )
13 12 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝐴𝑏 = 𝐵 ) ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } )
14 7 13 mpteq12dv ( ( 𝜑 ∧ ( 𝑎 = 𝐴𝑏 = 𝐵 ) ) → ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝜓 ) } ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ) )
15 1 elexd ( 𝜑𝐴 ∈ V )
16 2 elexd ( 𝜑𝐵 ∈ V )
17 1 2 xpexd ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V )
18 17 pwexd ( 𝜑 → 𝒫 ( 𝐴 × 𝐵 ) ∈ V )
19 18 mptexd ( 𝜑 → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ) ∈ V )
20 4 14 15 16 19 ovmpod ( 𝜑 → ( 𝐴 𝐶 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ) )