Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirvallem.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
2 |
|
bj-imdirvallem.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
bj-imdirvallem.df |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝜓 ) } ) ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝜓 ) } ) ) ) |
5 |
|
xpeq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 × 𝑏 ) = ( 𝐴 × 𝐵 ) ) |
6 |
5
|
pweqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |
8 |
|
sseq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑥 ⊆ 𝑎 ↔ 𝑥 ⊆ 𝐴 ) ) |
9 |
|
sseq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑦 ⊆ 𝑏 ↔ 𝑦 ⊆ 𝐵 ) ) |
10 |
8 9
|
bi2anan9 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ) ) |
11 |
10
|
anbi1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝜓 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) ) ) |
12 |
11
|
opabbidv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝜓 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝜓 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ) |
14 |
7 13
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝜓 ) } ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ) ) |
15 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
16 |
2
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
17 |
1 2
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
18 |
17
|
pwexd |
⊢ ( 𝜑 → 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) |
19 |
18
|
mptexd |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ) ∈ V ) |
20 |
4 14 15 16 19
|
ovmpod |
⊢ ( 𝜑 → ( 𝐴 𝐶 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ) ) |