Metamath Proof Explorer


Theorem bj-iminvval

Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-iminvval.1 ( 𝜑𝐴𝑈 )
bj-iminvval.2 ( 𝜑𝐵𝑉 )
Assertion bj-iminvval ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑟𝑦 ) ) } ) )

Proof

Step Hyp Ref Expression
1 bj-iminvval.1 ( 𝜑𝐴𝑈 )
2 bj-iminvval.2 ( 𝜑𝐵𝑉 )
3 df-iminv 𝒫* = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑎𝑦𝑏 ) ∧ 𝑥 = ( 𝑟𝑦 ) ) } ) )
4 1 2 3 bj-imdirvallem ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑟𝑦 ) ) } ) )