Metamath Proof Explorer


Theorem bj-iminvval2

Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-iminvval2.exa ( 𝜑𝐴𝑈 )
bj-iminvval2.exb ( 𝜑𝐵𝑉 )
bj-iminvval2.arg ( 𝜑𝑅 ⊆ ( 𝐴 × 𝐵 ) )
Assertion bj-iminvval2 ( 𝜑 → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑅𝑦 ) ) } )

Proof

Step Hyp Ref Expression
1 bj-iminvval2.exa ( 𝜑𝐴𝑈 )
2 bj-iminvval2.exb ( 𝜑𝐵𝑉 )
3 bj-iminvval2.arg ( 𝜑𝑅 ⊆ ( 𝐴 × 𝐵 ) )
4 1 2 bj-iminvval ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑟𝑦 ) ) } ) )
5 simpr ( ( 𝜑𝑟 = 𝑅 ) → 𝑟 = 𝑅 )
6 5 cnveqd ( ( 𝜑𝑟 = 𝑅 ) → 𝑟 = 𝑅 )
7 6 imaeq1d ( ( 𝜑𝑟 = 𝑅 ) → ( 𝑟𝑦 ) = ( 𝑅𝑦 ) )
8 7 eqeq2d ( ( 𝜑𝑟 = 𝑅 ) → ( 𝑥 = ( 𝑟𝑦 ) ↔ 𝑥 = ( 𝑅𝑦 ) ) )
9 8 anbi2d ( ( 𝜑𝑟 = 𝑅 ) → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑟𝑦 ) ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑅𝑦 ) ) ) )
10 9 opabbidv ( ( 𝜑𝑟 = 𝑅 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑟𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑅𝑦 ) ) } )
11 1 2 xpexd ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V )
12 11 3 sselpwd ( 𝜑𝑅 ∈ 𝒫 ( 𝐴 × 𝐵 ) )
13 1 2 bj-imdirval2lem ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑅𝑦 ) ) } ∈ V )
14 4 10 12 13 fvmptd ( 𝜑 → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 = ( 𝑅𝑦 ) ) } )