| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-iminvval2.exa | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 2 |  | bj-iminvval2.exb | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | bj-iminvval2.arg | ⊢ ( 𝜑  →  𝑅  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 4 | 1 2 | bj-iminvval | ⊢ ( 𝜑  →  ( 𝐴 𝒫* 𝐵 )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑟  “  𝑦 ) ) } ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑅 )  →  𝑟  =  𝑅 ) | 
						
							| 6 | 5 | cnveqd | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑅 )  →  ◡ 𝑟  =  ◡ 𝑅 ) | 
						
							| 7 | 6 | imaeq1d | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑅 )  →  ( ◡ 𝑟  “  𝑦 )  =  ( ◡ 𝑅  “  𝑦 ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑅 )  →  ( 𝑥  =  ( ◡ 𝑟  “  𝑦 )  ↔  𝑥  =  ( ◡ 𝑅  “  𝑦 ) ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑅 )  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑟  “  𝑦 ) )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑅  “  𝑦 ) ) ) ) | 
						
							| 10 | 9 | opabbidv | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑅 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑟  “  𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑅  “  𝑦 ) ) } ) | 
						
							| 11 | 1 2 | xpexd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 12 | 11 3 | sselpwd | ⊢ ( 𝜑  →  𝑅  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 13 | 1 2 | bj-imdirval2lem | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑅  “  𝑦 ) ) }  ∈  V ) | 
						
							| 14 | 4 10 12 13 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝑥  =  ( ◡ 𝑅  “  𝑦 ) ) } ) |