Step |
Hyp |
Ref |
Expression |
1 |
|
bj-iminvval2.exa |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
2 |
|
bj-iminvval2.exb |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
bj-iminvval2.arg |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝐴 × 𝐵 ) ) |
4 |
1 2
|
bj-iminvval |
⊢ ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) } ) ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
6 |
5
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ◡ 𝑟 = ◡ 𝑅 ) |
7 |
6
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ( ◡ 𝑟 “ 𝑦 ) = ( ◡ 𝑅 “ 𝑦 ) ) |
8 |
7
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ( 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ↔ 𝑥 = ( ◡ 𝑅 “ 𝑦 ) ) ) |
9 |
8
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑅 “ 𝑦 ) ) ) ) |
10 |
9
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑅 “ 𝑦 ) ) } ) |
11 |
1 2
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
12 |
11 3
|
sselpwd |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
13 |
1 2
|
bj-imdirval2lem |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑅 “ 𝑦 ) ) } ∈ V ) |
14 |
4 10 12 13
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝑥 = ( ◡ 𝑅 “ 𝑦 ) ) } ) |