Step |
Hyp |
Ref |
Expression |
1 |
|
bj-iminvval2.exa |
|- ( ph -> A e. U ) |
2 |
|
bj-iminvval2.exb |
|- ( ph -> B e. V ) |
3 |
|
bj-iminvval2.arg |
|- ( ph -> R C_ ( A X. B ) ) |
4 |
1 2
|
bj-iminvval |
|- ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) |
5 |
|
simpr |
|- ( ( ph /\ r = R ) -> r = R ) |
6 |
5
|
cnveqd |
|- ( ( ph /\ r = R ) -> `' r = `' R ) |
7 |
6
|
imaeq1d |
|- ( ( ph /\ r = R ) -> ( `' r " y ) = ( `' R " y ) ) |
8 |
7
|
eqeq2d |
|- ( ( ph /\ r = R ) -> ( x = ( `' r " y ) <-> x = ( `' R " y ) ) ) |
9 |
8
|
anbi2d |
|- ( ( ph /\ r = R ) -> ( ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) <-> ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) ) ) |
10 |
9
|
opabbidv |
|- ( ( ph /\ r = R ) -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) |
11 |
1 2
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
12 |
11 3
|
sselpwd |
|- ( ph -> R e. ~P ( A X. B ) ) |
13 |
1 2
|
bj-imdirval2lem |
|- ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } e. _V ) |
14 |
4 10 12 13
|
fvmptd |
|- ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) |