Metamath Proof Explorer


Theorem bj-iminvval2

Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-iminvval2.exa
|- ( ph -> A e. U )
bj-iminvval2.exb
|- ( ph -> B e. V )
bj-iminvval2.arg
|- ( ph -> R C_ ( A X. B ) )
Assertion bj-iminvval2
|- ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } )

Proof

Step Hyp Ref Expression
1 bj-iminvval2.exa
 |-  ( ph -> A e. U )
2 bj-iminvval2.exb
 |-  ( ph -> B e. V )
3 bj-iminvval2.arg
 |-  ( ph -> R C_ ( A X. B ) )
4 1 2 bj-iminvval
 |-  ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) )
5 simpr
 |-  ( ( ph /\ r = R ) -> r = R )
6 5 cnveqd
 |-  ( ( ph /\ r = R ) -> `' r = `' R )
7 6 imaeq1d
 |-  ( ( ph /\ r = R ) -> ( `' r " y ) = ( `' R " y ) )
8 7 eqeq2d
 |-  ( ( ph /\ r = R ) -> ( x = ( `' r " y ) <-> x = ( `' R " y ) ) )
9 8 anbi2d
 |-  ( ( ph /\ r = R ) -> ( ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) <-> ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) ) )
10 9 opabbidv
 |-  ( ( ph /\ r = R ) -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } )
11 1 2 xpexd
 |-  ( ph -> ( A X. B ) e. _V )
12 11 3 sselpwd
 |-  ( ph -> R e. ~P ( A X. B ) )
13 1 2 bj-imdirval2lem
 |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } e. _V )
14 4 10 12 13 fvmptd
 |-  ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } )