| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-iminvval2.exa |  |-  ( ph -> A e. U ) | 
						
							| 2 |  | bj-iminvval2.exb |  |-  ( ph -> B e. V ) | 
						
							| 3 |  | bj-iminvval2.arg |  |-  ( ph -> R C_ ( A X. B ) ) | 
						
							| 4 | 1 2 | bj-iminvval |  |-  ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ r = R ) -> r = R ) | 
						
							| 6 | 5 | cnveqd |  |-  ( ( ph /\ r = R ) -> `' r = `' R ) | 
						
							| 7 | 6 | imaeq1d |  |-  ( ( ph /\ r = R ) -> ( `' r " y ) = ( `' R " y ) ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( ( ph /\ r = R ) -> ( x = ( `' r " y ) <-> x = ( `' R " y ) ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( ( ph /\ r = R ) -> ( ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) <-> ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) ) ) | 
						
							| 10 | 9 | opabbidv |  |-  ( ( ph /\ r = R ) -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) | 
						
							| 11 | 1 2 | xpexd |  |-  ( ph -> ( A X. B ) e. _V ) | 
						
							| 12 | 11 3 | sselpwd |  |-  ( ph -> R e. ~P ( A X. B ) ) | 
						
							| 13 | 1 2 | bj-imdirval2lem |  |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } e. _V ) | 
						
							| 14 | 4 10 12 13 | fvmptd |  |-  ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) |