| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-iminvid.ex |  |-  ( ph -> A e. U ) | 
						
							| 2 |  | idssxp |  |-  ( _I |` A ) C_ ( A X. A ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> ( _I |` A ) C_ ( A X. A ) ) | 
						
							| 4 | 1 1 3 | bj-iminvval2 |  |-  ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ x = ( `' ( _I |` A ) " y ) ) } ) | 
						
							| 5 |  | cnvresid |  |-  `' ( _I |` A ) = ( _I |` A ) | 
						
							| 6 | 5 | imaeq1i |  |-  ( `' ( _I |` A ) " y ) = ( ( _I |` A ) " y ) | 
						
							| 7 |  | resiima |  |-  ( y C_ A -> ( ( _I |` A ) " y ) = y ) | 
						
							| 8 | 6 7 | eqtrid |  |-  ( y C_ A -> ( `' ( _I |` A ) " y ) = y ) | 
						
							| 9 | 8 | adantl |  |-  ( ( x C_ A /\ y C_ A ) -> ( `' ( _I |` A ) " y ) = y ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( x C_ A /\ y C_ A ) -> ( x = ( `' ( _I |` A ) " y ) <-> x = y ) ) | 
						
							| 11 | 10 | bj-imdiridlem |  |-  { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ x = ( `' ( _I |` A ) " y ) ) } = ( _I |` ~P A ) | 
						
							| 12 | 4 11 | eqtrdi |  |-  ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) |