Metamath Proof Explorer


Theorem bj-iminvid

Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024)

Ref Expression
Hypothesis bj-iminvid.ex
|- ( ph -> A e. U )
Assertion bj-iminvid
|- ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) )

Proof

Step Hyp Ref Expression
1 bj-iminvid.ex
 |-  ( ph -> A e. U )
2 idssxp
 |-  ( _I |` A ) C_ ( A X. A )
3 2 a1i
 |-  ( ph -> ( _I |` A ) C_ ( A X. A ) )
4 1 1 3 bj-iminvval2
 |-  ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ x = ( `' ( _I |` A ) " y ) ) } )
5 cnvresid
 |-  `' ( _I |` A ) = ( _I |` A )
6 5 imaeq1i
 |-  ( `' ( _I |` A ) " y ) = ( ( _I |` A ) " y )
7 resiima
 |-  ( y C_ A -> ( ( _I |` A ) " y ) = y )
8 6 7 syl5eq
 |-  ( y C_ A -> ( `' ( _I |` A ) " y ) = y )
9 8 adantl
 |-  ( ( x C_ A /\ y C_ A ) -> ( `' ( _I |` A ) " y ) = y )
10 9 eqeq2d
 |-  ( ( x C_ A /\ y C_ A ) -> ( x = ( `' ( _I |` A ) " y ) <-> x = y ) )
11 10 bj-imdiridlem
 |-  { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ x = ( `' ( _I |` A ) " y ) ) } = ( _I |` ~P A )
12 4 11 eqtrdi
 |-  ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) )