Step |
Hyp |
Ref |
Expression |
1 |
|
bj-iminvid.ex |
|- ( ph -> A e. U ) |
2 |
|
idssxp |
|- ( _I |` A ) C_ ( A X. A ) |
3 |
2
|
a1i |
|- ( ph -> ( _I |` A ) C_ ( A X. A ) ) |
4 |
1 1 3
|
bj-iminvval2 |
|- ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ x = ( `' ( _I |` A ) " y ) ) } ) |
5 |
|
cnvresid |
|- `' ( _I |` A ) = ( _I |` A ) |
6 |
5
|
imaeq1i |
|- ( `' ( _I |` A ) " y ) = ( ( _I |` A ) " y ) |
7 |
|
resiima |
|- ( y C_ A -> ( ( _I |` A ) " y ) = y ) |
8 |
6 7
|
syl5eq |
|- ( y C_ A -> ( `' ( _I |` A ) " y ) = y ) |
9 |
8
|
adantl |
|- ( ( x C_ A /\ y C_ A ) -> ( `' ( _I |` A ) " y ) = y ) |
10 |
9
|
eqeq2d |
|- ( ( x C_ A /\ y C_ A ) -> ( x = ( `' ( _I |` A ) " y ) <-> x = y ) ) |
11 |
10
|
bj-imdiridlem |
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ x = ( `' ( _I |` A ) " y ) ) } = ( _I |` ~P A ) |
12 |
4 11
|
eqtrdi |
|- ( ph -> ( ( A ~P^* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) |