| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-imdiridlem.1 |
|- ( ( x C_ A /\ y C_ A ) -> ( ph <-> x = y ) ) |
| 2 |
1
|
biimp3a |
|- ( ( x C_ A /\ y C_ A /\ ph ) -> x = y ) |
| 3 |
2
|
3expib |
|- ( x C_ A -> ( ( y C_ A /\ ph ) -> x = y ) ) |
| 4 |
|
equcomi |
|- ( x = y -> y = x ) |
| 5 |
4
|
sseq1d |
|- ( x = y -> ( y C_ A <-> x C_ A ) ) |
| 6 |
5
|
biimparc |
|- ( ( x C_ A /\ x = y ) -> y C_ A ) |
| 7 |
|
simpr |
|- ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> y C_ A ) |
| 8 |
1
|
biimpar |
|- ( ( ( x C_ A /\ y C_ A ) /\ x = y ) -> ph ) |
| 9 |
8
|
an32s |
|- ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> ph ) |
| 10 |
7 9
|
jca |
|- ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> ( y C_ A /\ ph ) ) |
| 11 |
6 10
|
mpdan |
|- ( ( x C_ A /\ x = y ) -> ( y C_ A /\ ph ) ) |
| 12 |
11
|
ex |
|- ( x C_ A -> ( x = y -> ( y C_ A /\ ph ) ) ) |
| 13 |
3 12
|
impbid |
|- ( x C_ A -> ( ( y C_ A /\ ph ) <-> x = y ) ) |
| 14 |
13
|
pm5.32i |
|- ( ( x C_ A /\ ( y C_ A /\ ph ) ) <-> ( x C_ A /\ x = y ) ) |
| 15 |
|
anass |
|- ( ( ( x C_ A /\ y C_ A ) /\ ph ) <-> ( x C_ A /\ ( y C_ A /\ ph ) ) ) |
| 16 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
| 17 |
|
vex |
|- y e. _V |
| 18 |
17
|
ideq |
|- ( x _I y <-> x = y ) |
| 19 |
16 18
|
anbi12i |
|- ( ( x e. ~P A /\ x _I y ) <-> ( x C_ A /\ x = y ) ) |
| 20 |
14 15 19
|
3bitr4i |
|- ( ( ( x C_ A /\ y C_ A ) /\ ph ) <-> ( x e. ~P A /\ x _I y ) ) |
| 21 |
20
|
opabbii |
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = { <. x , y >. | ( x e. ~P A /\ x _I y ) } |
| 22 |
|
dfres2 |
|- ( _I |` ~P A ) = { <. x , y >. | ( x e. ~P A /\ x _I y ) } |
| 23 |
21 22
|
eqtr4i |
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = ( _I |` ~P A ) |