Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdiridlem.1 |
|- ( ( x C_ A /\ y C_ A ) -> ( ph <-> x = y ) ) |
2 |
1
|
biimp3a |
|- ( ( x C_ A /\ y C_ A /\ ph ) -> x = y ) |
3 |
2
|
3expib |
|- ( x C_ A -> ( ( y C_ A /\ ph ) -> x = y ) ) |
4 |
|
equcomi |
|- ( x = y -> y = x ) |
5 |
4
|
sseq1d |
|- ( x = y -> ( y C_ A <-> x C_ A ) ) |
6 |
5
|
biimparc |
|- ( ( x C_ A /\ x = y ) -> y C_ A ) |
7 |
|
simpr |
|- ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> y C_ A ) |
8 |
1
|
biimpar |
|- ( ( ( x C_ A /\ y C_ A ) /\ x = y ) -> ph ) |
9 |
8
|
an32s |
|- ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> ph ) |
10 |
7 9
|
jca |
|- ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> ( y C_ A /\ ph ) ) |
11 |
6 10
|
mpdan |
|- ( ( x C_ A /\ x = y ) -> ( y C_ A /\ ph ) ) |
12 |
11
|
ex |
|- ( x C_ A -> ( x = y -> ( y C_ A /\ ph ) ) ) |
13 |
3 12
|
impbid |
|- ( x C_ A -> ( ( y C_ A /\ ph ) <-> x = y ) ) |
14 |
13
|
pm5.32i |
|- ( ( x C_ A /\ ( y C_ A /\ ph ) ) <-> ( x C_ A /\ x = y ) ) |
15 |
|
anass |
|- ( ( ( x C_ A /\ y C_ A ) /\ ph ) <-> ( x C_ A /\ ( y C_ A /\ ph ) ) ) |
16 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
17 |
|
vex |
|- y e. _V |
18 |
17
|
ideq |
|- ( x _I y <-> x = y ) |
19 |
16 18
|
anbi12i |
|- ( ( x e. ~P A /\ x _I y ) <-> ( x C_ A /\ x = y ) ) |
20 |
14 15 19
|
3bitr4i |
|- ( ( ( x C_ A /\ y C_ A ) /\ ph ) <-> ( x e. ~P A /\ x _I y ) ) |
21 |
20
|
opabbii |
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = { <. x , y >. | ( x e. ~P A /\ x _I y ) } |
22 |
|
dfres2 |
|- ( _I |` ~P A ) = { <. x , y >. | ( x e. ~P A /\ x _I y ) } |
23 |
21 22
|
eqtr4i |
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = ( _I |` ~P A ) |