Metamath Proof Explorer


Theorem bj-imdiridlem

Description: Lemma for bj-imdirid and bj-iminvid . (Contributed by BJ, 26-May-2024)

Ref Expression
Hypothesis bj-imdiridlem.1
|- ( ( x C_ A /\ y C_ A ) -> ( ph <-> x = y ) )
Assertion bj-imdiridlem
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = ( _I |` ~P A )

Proof

Step Hyp Ref Expression
1 bj-imdiridlem.1
 |-  ( ( x C_ A /\ y C_ A ) -> ( ph <-> x = y ) )
2 1 biimp3a
 |-  ( ( x C_ A /\ y C_ A /\ ph ) -> x = y )
3 2 3expib
 |-  ( x C_ A -> ( ( y C_ A /\ ph ) -> x = y ) )
4 equcomi
 |-  ( x = y -> y = x )
5 4 sseq1d
 |-  ( x = y -> ( y C_ A <-> x C_ A ) )
6 5 biimparc
 |-  ( ( x C_ A /\ x = y ) -> y C_ A )
7 simpr
 |-  ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> y C_ A )
8 1 biimpar
 |-  ( ( ( x C_ A /\ y C_ A ) /\ x = y ) -> ph )
9 8 an32s
 |-  ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> ph )
10 7 9 jca
 |-  ( ( ( x C_ A /\ x = y ) /\ y C_ A ) -> ( y C_ A /\ ph ) )
11 6 10 mpdan
 |-  ( ( x C_ A /\ x = y ) -> ( y C_ A /\ ph ) )
12 11 ex
 |-  ( x C_ A -> ( x = y -> ( y C_ A /\ ph ) ) )
13 3 12 impbid
 |-  ( x C_ A -> ( ( y C_ A /\ ph ) <-> x = y ) )
14 13 pm5.32i
 |-  ( ( x C_ A /\ ( y C_ A /\ ph ) ) <-> ( x C_ A /\ x = y ) )
15 anass
 |-  ( ( ( x C_ A /\ y C_ A ) /\ ph ) <-> ( x C_ A /\ ( y C_ A /\ ph ) ) )
16 velpw
 |-  ( x e. ~P A <-> x C_ A )
17 vex
 |-  y e. _V
18 17 ideq
 |-  ( x _I y <-> x = y )
19 16 18 anbi12i
 |-  ( ( x e. ~P A /\ x _I y ) <-> ( x C_ A /\ x = y ) )
20 14 15 19 3bitr4i
 |-  ( ( ( x C_ A /\ y C_ A ) /\ ph ) <-> ( x e. ~P A /\ x _I y ) )
21 20 opabbii
 |-  { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = { <. x , y >. | ( x e. ~P A /\ x _I y ) }
22 dfres2
 |-  ( _I |` ~P A ) = { <. x , y >. | ( x e. ~P A /\ x _I y ) }
23 21 22 eqtr4i
 |-  { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ph ) } = ( _I |` ~P A )