Description: Lemma for bj-imdirid and bj-iminvid . (Contributed by BJ, 26-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-imdiridlem.1 | |
|
Assertion | bj-imdiridlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdiridlem.1 | |
|
2 | 1 | biimp3a | |
3 | 2 | 3expib | |
4 | equcomi | |
|
5 | 4 | sseq1d | |
6 | 5 | biimparc | |
7 | simpr | |
|
8 | 1 | biimpar | |
9 | 8 | an32s | |
10 | 7 9 | jca | |
11 | 6 10 | mpdan | |
12 | 11 | ex | |
13 | 3 12 | impbid | |
14 | 13 | pm5.32i | |
15 | anass | |
|
16 | velpw | |
|
17 | vex | |
|
18 | 17 | ideq | |
19 | 16 18 | anbi12i | |
20 | 14 15 19 | 3bitr4i | |
21 | 20 | opabbii | |
22 | dfres2 | |
|
23 | 21 22 | eqtr4i | |