Metamath Proof Explorer


Theorem bj-imdirid

Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023)

Ref Expression
Hypothesis bj-imdirid.ex φ A U
Assertion bj-imdirid φ A 𝒫 * A I A = I 𝒫 A

Proof

Step Hyp Ref Expression
1 bj-imdirid.ex φ A U
2 idssxp I A A × A
3 2 a1i φ I A A × A
4 1 1 3 bj-imdirval2 φ A 𝒫 * A I A = x y | x A y A I A x = y
5 resiima x A I A x = x
6 5 adantr x A y A I A x = x
7 6 eqeq1d x A y A I A x = y x = y
8 7 bj-imdiridlem x y | x A y A I A x = y = I 𝒫 A
9 4 8 eqtrdi φ A 𝒫 * A I A = I 𝒫 A