Metamath Proof Explorer


Theorem bj-imdirid

Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023)

Ref Expression
Hypothesis bj-imdirid.ex φ A U
Assertion bj-imdirid Could not format assertion : No typesetting found for |- ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-imdirid.ex φ A U
2 idssxp I A A × A
3 2 a1i φ I A A × A
4 1 1 3 bj-imdirval2 Could not format ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } ) : No typesetting found for |- ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } ) with typecode |-
5 resiima x A I A x = x
6 5 adantr x A y A I A x = x
7 6 eqeq1d x A y A I A x = y x = y
8 7 bj-imdiridlem x y | x A y A I A x = y = I 𝒫 A
9 4 8 eqtrdi Could not format ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) : No typesetting found for |- ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) with typecode |-