Metamath Proof Explorer


Theorem bj-imdirid

Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023)

Ref Expression
Hypothesis bj-imdirid.ex
|- ( ph -> A e. U )
Assertion bj-imdirid
|- ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) )

Proof

Step Hyp Ref Expression
1 bj-imdirid.ex
 |-  ( ph -> A e. U )
2 idssxp
 |-  ( _I |` A ) C_ ( A X. A )
3 2 a1i
 |-  ( ph -> ( _I |` A ) C_ ( A X. A ) )
4 1 1 3 bj-imdirval2
 |-  ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } )
5 resiima
 |-  ( x C_ A -> ( ( _I |` A ) " x ) = x )
6 5 adantr
 |-  ( ( x C_ A /\ y C_ A ) -> ( ( _I |` A ) " x ) = x )
7 6 eqeq1d
 |-  ( ( x C_ A /\ y C_ A ) -> ( ( ( _I |` A ) " x ) = y <-> x = y ) )
8 7 bj-imdiridlem
 |-  { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } = ( _I |` ~P A )
9 4 8 eqtrdi
 |-  ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) )