| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirid.ex |  |-  ( ph -> A e. U ) | 
						
							| 2 |  | idssxp |  |-  ( _I |` A ) C_ ( A X. A ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> ( _I |` A ) C_ ( A X. A ) ) | 
						
							| 4 | 1 1 3 | bj-imdirval2 |  |-  ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } ) | 
						
							| 5 |  | resiima |  |-  ( x C_ A -> ( ( _I |` A ) " x ) = x ) | 
						
							| 6 | 5 | adantr |  |-  ( ( x C_ A /\ y C_ A ) -> ( ( _I |` A ) " x ) = x ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( x C_ A /\ y C_ A ) -> ( ( ( _I |` A ) " x ) = y <-> x = y ) ) | 
						
							| 8 | 7 | bj-imdiridlem |  |-  { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } = ( _I |` ~P A ) | 
						
							| 9 | 4 8 | eqtrdi |  |-  ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) |