Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirid.ex |
|- ( ph -> A e. U ) |
2 |
|
idssxp |
|- ( _I |` A ) C_ ( A X. A ) |
3 |
2
|
a1i |
|- ( ph -> ( _I |` A ) C_ ( A X. A ) ) |
4 |
1 1 3
|
bj-imdirval2 |
|- ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } ) |
5 |
|
resiima |
|- ( x C_ A -> ( ( _I |` A ) " x ) = x ) |
6 |
5
|
adantr |
|- ( ( x C_ A /\ y C_ A ) -> ( ( _I |` A ) " x ) = x ) |
7 |
6
|
eqeq1d |
|- ( ( x C_ A /\ y C_ A ) -> ( ( ( _I |` A ) " x ) = y <-> x = y ) ) |
8 |
7
|
bj-imdiridlem |
|- { <. x , y >. | ( ( x C_ A /\ y C_ A ) /\ ( ( _I |` A ) " x ) = y ) } = ( _I |` ~P A ) |
9 |
4 8
|
eqtrdi |
|- ( ph -> ( ( A ~P_* A ) ` ( _I |` A ) ) = ( _I |` ~P A ) ) |