Metamath Proof Explorer


Theorem bj-imdirid

Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023)

Ref Expression
Hypothesis bj-imdirid.ex ( 𝜑𝐴𝑈 )
Assertion bj-imdirid ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 bj-imdirid.ex ( 𝜑𝐴𝑈 )
2 idssxp ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 )
3 2 a1i ( 𝜑 → ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) )
4 1 1 3 bj-imdirval2 ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑦 ) } )
5 resiima ( 𝑥𝐴 → ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑥 )
6 5 adantr ( ( 𝑥𝐴𝑦𝐴 ) → ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑥 )
7 6 eqeq1d ( ( 𝑥𝐴𝑦𝐴 ) → ( ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑦𝑥 = 𝑦 ) )
8 7 bj-imdiridlem { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑦 ) } = ( I ↾ 𝒫 𝐴 )
9 4 8 eqtrdi ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝒫 𝐴 ) )