Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirid.ex |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
2 |
|
idssxp |
⊢ ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) |
3 |
2
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
4 |
1 1 3
|
bj-imdirval2 |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑦 ) } ) |
5 |
|
resiima |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑥 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑥 ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑦 ↔ 𝑥 = 𝑦 ) ) |
8 |
7
|
bj-imdiridlem |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ ( ( I ↾ 𝐴 ) “ 𝑥 ) = 𝑦 ) } = ( I ↾ 𝒫 𝐴 ) |
9 |
4 8
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝒫 𝐴 ) ) |