| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirid.ex | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 2 |  | idssxp | ⊢ (  I   ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐴 ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝜑  →  (  I   ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐴 ) ) | 
						
							| 4 | 1 1 3 | bj-imdirval2 | ⊢ ( 𝜑  →  ( ( 𝐴 𝒫* 𝐴 ) ‘ (  I   ↾  𝐴 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  ( (  I   ↾  𝐴 )  “  𝑥 )  =  𝑦 ) } ) | 
						
							| 5 |  | resiima | ⊢ ( 𝑥  ⊆  𝐴  →  ( (  I   ↾  𝐴 )  “  𝑥 )  =  𝑥 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  →  ( (  I   ↾  𝐴 )  “  𝑥 )  =  𝑥 ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  →  ( ( (  I   ↾  𝐴 )  “  𝑥 )  =  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 8 | 7 | bj-imdiridlem | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  ( (  I   ↾  𝐴 )  “  𝑥 )  =  𝑦 ) }  =  (  I   ↾  𝒫  𝐴 ) | 
						
							| 9 | 4 8 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝐴 𝒫* 𝐴 ) ‘ (  I   ↾  𝐴 ) )  =  (  I   ↾  𝒫  𝐴 ) ) |