Metamath Proof Explorer


Theorem bj-opelopabid

Description: Membership in an ordered-pair class abstraction. One can remove the DV condition on x , y by using opabid in place of opabidw . (Contributed by BJ, 22-May-2024)

Ref Expression
Assertion bj-opelopabid ( 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦𝜑 )

Proof

Step Hyp Ref Expression
1 df-br ( 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
2 opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜑 )
3 1 2 bitri ( 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦𝜑 )