Metamath Proof Explorer


Theorem bj-opelopabid

Description: Membership in an ordered-pair class abstraction. One can remove the DV condition on x , y by using opabid in place of opabidw . (Contributed by BJ, 22-May-2024)

Ref Expression
Assertion bj-opelopabid
|- ( x { <. x , y >. | ph } y <-> ph )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( x { <. x , y >. | ph } y <-> <. x , y >. e. { <. x , y >. | ph } )
2 opabidw
 |-  ( <. x , y >. e. { <. x , y >. | ph } <-> ph )
3 1 2 bitri
 |-  ( x { <. x , y >. | ph } y <-> ph )