| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-co |  |-  ( { <. y , z >. | ps } o. { <. x , y >. | ph } ) = { <. a , b >. | E. c ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) } | 
						
							| 2 |  | nfcv |  |-  F/_ x a | 
						
							| 3 |  | nfopab1 |  |-  F/_ x { <. x , y >. | ph } | 
						
							| 4 |  | nfcv |  |-  F/_ x c | 
						
							| 5 | 2 3 4 | nfbr |  |-  F/ x a { <. x , y >. | ph } c | 
						
							| 6 |  | nfv |  |-  F/ x c { <. y , z >. | ps } b | 
						
							| 7 | 5 6 | nfan |  |-  F/ x ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) | 
						
							| 8 | 7 | nfex |  |-  F/ x E. c ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) | 
						
							| 9 |  | nfv |  |-  F/ z a { <. x , y >. | ph } c | 
						
							| 10 |  | nfcv |  |-  F/_ z c | 
						
							| 11 |  | nfopab2 |  |-  F/_ z { <. y , z >. | ps } | 
						
							| 12 |  | nfcv |  |-  F/_ z b | 
						
							| 13 | 10 11 12 | nfbr |  |-  F/ z c { <. y , z >. | ps } b | 
						
							| 14 | 9 13 | nfan |  |-  F/ z ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) | 
						
							| 15 | 14 | nfex |  |-  F/ z E. c ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) | 
						
							| 16 |  | nfv |  |-  F/ a E. y ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) | 
						
							| 17 |  | nfv |  |-  F/ b E. y ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) | 
						
							| 18 |  | nfv |  |-  F/ y ( a = x /\ b = z ) | 
						
							| 19 |  | nfcv |  |-  F/_ y a | 
						
							| 20 |  | nfopab2 |  |-  F/_ y { <. x , y >. | ph } | 
						
							| 21 |  | nfcv |  |-  F/_ y c | 
						
							| 22 | 19 20 21 | nfbr |  |-  F/ y a { <. x , y >. | ph } c | 
						
							| 23 |  | nfopab1 |  |-  F/_ y { <. y , z >. | ps } | 
						
							| 24 |  | nfcv |  |-  F/_ y b | 
						
							| 25 | 21 23 24 | nfbr |  |-  F/ y c { <. y , z >. | ps } b | 
						
							| 26 | 22 25 | nfan |  |-  F/ y ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) | 
						
							| 27 | 26 | a1i |  |-  ( ( a = x /\ b = z ) -> F/ y ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) ) | 
						
							| 28 |  | simpll |  |-  ( ( ( a = x /\ b = z ) /\ c = y ) -> a = x ) | 
						
							| 29 |  | simpr |  |-  ( ( ( a = x /\ b = z ) /\ c = y ) -> c = y ) | 
						
							| 30 | 28 29 | breq12d |  |-  ( ( ( a = x /\ b = z ) /\ c = y ) -> ( a { <. x , y >. | ph } c <-> x { <. x , y >. | ph } y ) ) | 
						
							| 31 |  | simplr |  |-  ( ( ( a = x /\ b = z ) /\ c = y ) -> b = z ) | 
						
							| 32 | 29 31 | breq12d |  |-  ( ( ( a = x /\ b = z ) /\ c = y ) -> ( c { <. y , z >. | ps } b <-> y { <. y , z >. | ps } z ) ) | 
						
							| 33 | 30 32 | anbi12d |  |-  ( ( ( a = x /\ b = z ) /\ c = y ) -> ( ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) <-> ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) ) ) | 
						
							| 34 | 33 | ex |  |-  ( ( a = x /\ b = z ) -> ( c = y -> ( ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) <-> ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) ) ) ) | 
						
							| 35 | 18 27 34 | cbvexdw |  |-  ( ( a = x /\ b = z ) -> ( E. c ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) <-> E. y ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) ) ) | 
						
							| 36 | 8 15 16 17 35 | cbvopab |  |-  { <. a , b >. | E. c ( a { <. x , y >. | ph } c /\ c { <. y , z >. | ps } b ) } = { <. x , z >. | E. y ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) } | 
						
							| 37 |  | bj-opelopabid |  |-  ( x { <. x , y >. | ph } y <-> ph ) | 
						
							| 38 |  | bj-opelopabid |  |-  ( y { <. y , z >. | ps } z <-> ps ) | 
						
							| 39 | 37 38 | anbi12i |  |-  ( ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) <-> ( ph /\ ps ) ) | 
						
							| 40 | 39 | exbii |  |-  ( E. y ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) <-> E. y ( ph /\ ps ) ) | 
						
							| 41 | 40 | opabbii |  |-  { <. x , z >. | E. y ( x { <. x , y >. | ph } y /\ y { <. y , z >. | ps } z ) } = { <. x , z >. | E. y ( ph /\ ps ) } | 
						
							| 42 | 1 36 41 | 3eqtri |  |-  ( { <. y , z >. | ps } o. { <. x , y >. | ph } ) = { <. x , z >. | E. y ( ph /\ ps ) } |