| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-imdirval2.exa |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 2 |
|
bj-imdirval2.exb |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 3 |
|
bj-imdirval2.arg |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝐴 × 𝐵 ) ) |
| 4 |
1 2
|
bj-imdirval |
⊢ ( 𝜑 → ( 𝐴 𝒫* 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) } ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
| 6 |
5
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ( 𝑟 “ 𝑥 ) = ( 𝑅 “ 𝑥 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ( ( 𝑟 “ 𝑥 ) = 𝑦 ↔ ( 𝑅 “ 𝑥 ) = 𝑦 ) ) |
| 8 |
7
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) ) ) |
| 9 |
8
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑅 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } ) |
| 10 |
1 2
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
| 11 |
10 3
|
sselpwd |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
| 12 |
1 2
|
bj-imdirval2lem |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } ∈ V ) |
| 13 |
4 9 11 12
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } ) |