Metamath Proof Explorer


Theorem bj-imdirval2

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval2.exa φAU
bj-imdirval2.exb φBV
bj-imdirval2.arg φRA×B
Assertion bj-imdirval2 Could not format assertion : No typesetting found for |- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-imdirval2.exa φAU
2 bj-imdirval2.exb φBV
3 bj-imdirval2.arg φRA×B
4 1 2 bj-imdirval Could not format ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) : No typesetting found for |- ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) with typecode |-
5 simpr φr=Rr=R
6 5 imaeq1d φr=Rrx=Rx
7 6 eqeq1d φr=Rrx=yRx=y
8 7 anbi2d φr=RxAyBrx=yxAyBRx=y
9 8 opabbidv φr=Rxy|xAyBrx=y=xy|xAyBRx=y
10 1 2 xpexd φA×BV
11 10 3 sselpwd φR𝒫A×B
12 1 2 bj-imdirval2lem φxy|xAyBRx=yV
13 4 9 11 12 fvmptd Could not format ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) : No typesetting found for |- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) with typecode |-