Metamath Proof Explorer


Theorem bj-imdirval2

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval2.exa φ A U
bj-imdirval2.exb φ B V
bj-imdirval2.arg φ R A × B
Assertion bj-imdirval2 Could not format assertion : No typesetting found for |- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-imdirval2.exa φ A U
2 bj-imdirval2.exb φ B V
3 bj-imdirval2.arg φ R A × B
4 1 2 bj-imdirval Could not format ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) : No typesetting found for |- ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) with typecode |-
5 simpr φ r = R r = R
6 5 imaeq1d φ r = R r x = R x
7 6 eqeq1d φ r = R r x = y R x = y
8 7 anbi2d φ r = R x A y B r x = y x A y B R x = y
9 8 opabbidv φ r = R x y | x A y B r x = y = x y | x A y B R x = y
10 1 2 xpexd φ A × B V
11 10 3 sselpwd φ R 𝒫 A × B
12 1 2 bj-imdirval2lem φ x y | x A y B R x = y V
13 4 9 11 12 fvmptd Could not format ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) : No typesetting found for |- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) with typecode |-