Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Extended real and complex numbers, real and complex projective lines
Direct image and inverse image
bj-imdirval2
Next ⟩
bj-imdirval3
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-imdirval2
Description:
Value of the functionalized direct image.
(Contributed by
BJ
, 16-Dec-2023)
Ref
Expression
Hypotheses
bj-imdirval2.exa
⊢
φ
→
A
∈
U
bj-imdirval2.exb
⊢
φ
→
B
∈
V
bj-imdirval2.arg
⊢
φ
→
R
⊆
A
×
B
Assertion
bj-imdirval2
⊢
φ
→
A
𝒫
*
B
⁡
R
=
x
y
|
x
⊆
A
∧
y
⊆
B
∧
R
x
=
y
Proof
Step
Hyp
Ref
Expression
1
bj-imdirval2.exa
⊢
φ
→
A
∈
U
2
bj-imdirval2.exb
⊢
φ
→
B
∈
V
3
bj-imdirval2.arg
⊢
φ
→
R
⊆
A
×
B
4
1
2
bj-imdirval
⊢
φ
→
A
𝒫
*
B
=
r
∈
𝒫
A
×
B
⟼
x
y
|
x
⊆
A
∧
y
⊆
B
∧
r
x
=
y
5
simpr
⊢
φ
∧
r
=
R
→
r
=
R
6
5
imaeq1d
⊢
φ
∧
r
=
R
→
r
x
=
R
x
7
6
eqeq1d
⊢
φ
∧
r
=
R
→
r
x
=
y
↔
R
x
=
y
8
7
anbi2d
⊢
φ
∧
r
=
R
→
x
⊆
A
∧
y
⊆
B
∧
r
x
=
y
↔
x
⊆
A
∧
y
⊆
B
∧
R
x
=
y
9
8
opabbidv
⊢
φ
∧
r
=
R
→
x
y
|
x
⊆
A
∧
y
⊆
B
∧
r
x
=
y
=
x
y
|
x
⊆
A
∧
y
⊆
B
∧
R
x
=
y
10
1
2
xpexd
⊢
φ
→
A
×
B
∈
V
11
10
3
sselpwd
⊢
φ
→
R
∈
𝒫
A
×
B
12
1
2
bj-imdirval2lem
⊢
φ
→
x
y
|
x
⊆
A
∧
y
⊆
B
∧
R
x
=
y
∈
V
13
4
9
11
12
fvmptd
⊢
φ
→
A
𝒫
*
B
⁡
R
=
x
y
|
x
⊆
A
∧
y
⊆
B
∧
R
x
=
y