Metamath Proof Explorer


Theorem bj-imdirval2

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval2.exa φ A U
bj-imdirval2.exb φ B V
bj-imdirval2.arg φ R A × B
Assertion bj-imdirval2 φ A 𝒫 * B R = x y | x A y B R x = y

Proof

Step Hyp Ref Expression
1 bj-imdirval2.exa φ A U
2 bj-imdirval2.exb φ B V
3 bj-imdirval2.arg φ R A × B
4 1 2 bj-imdirval φ A 𝒫 * B = r 𝒫 A × B x y | x A y B r x = y
5 simpr φ r = R r = R
6 5 imaeq1d φ r = R r x = R x
7 6 eqeq1d φ r = R r x = y R x = y
8 7 anbi2d φ r = R x A y B r x = y x A y B R x = y
9 8 opabbidv φ r = R x y | x A y B r x = y = x y | x A y B R x = y
10 1 2 xpexd φ A × B V
11 10 3 sselpwd φ R 𝒫 A × B
12 1 2 bj-imdirval2lem φ x y | x A y B R x = y V
13 4 9 11 12 fvmptd φ A 𝒫 * B R = x y | x A y B R x = y