Metamath Proof Explorer


Theorem bj-imdirval3

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval3.exa φAU
bj-imdirval3.exb φBV
bj-imdirval3.arg φRA×B
Assertion bj-imdirval3 Could not format assertion : No typesetting found for |- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-imdirval3.exa φAU
2 bj-imdirval3.exb φBV
3 bj-imdirval3.arg φRA×B
4 1 2 3 bj-imdirval2 Could not format ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) : No typesetting found for |- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) with typecode |-
5 4 breqd Could not format ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> X { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } Y ) ) : No typesetting found for |- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> X { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } Y ) ) with typecode |-
6 brabv Xxy|xAyBRx=yYXVYV
7 5 6 syl6bi Could not format ( ph -> ( X ( ( A ~P_* B ) ` R ) Y -> ( X e. _V /\ Y e. _V ) ) ) : No typesetting found for |- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y -> ( X e. _V /\ Y e. _V ) ) ) with typecode |-
8 7 pm4.71rd Could not format ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X e. _V /\ Y e. _V ) /\ X ( ( A ~P_* B ) ` R ) Y ) ) ) : No typesetting found for |- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X e. _V /\ Y e. _V ) /\ X ( ( A ~P_* B ) ` R ) Y ) ) ) with typecode |-
9 simpl XVYVXV
10 9 adantl φXVYVXV
11 simpr XVYVYV
12 11 adantl φXVYVYV
13 4 adantr Could not format ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) : No typesetting found for |- ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) with typecode |-
14 simpl x=Xy=Yx=X
15 14 sseq1d x=Xy=YxAXA
16 simpr x=Xy=Yy=Y
17 16 sseq1d x=Xy=YyBYB
18 15 17 anbi12d x=Xy=YxAyBXAYB
19 imaeq2 x=XRx=RX
20 id y=Yy=Y
21 19 20 eqeqan12d x=Xy=YRx=yRX=Y
22 18 21 anbi12d x=Xy=YxAyBRx=yXAYBRX=Y
23 22 adantl φXVYVx=Xy=YxAyBRx=yXAYBRX=Y
24 10 12 13 23 brabd Could not format ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) : No typesetting found for |- ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) with typecode |-
25 24 pm5.32da Could not format ( ph -> ( ( ( X e. _V /\ Y e. _V ) /\ X ( ( A ~P_* B ) ` R ) Y ) <-> ( ( X e. _V /\ Y e. _V ) /\ ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( X e. _V /\ Y e. _V ) /\ X ( ( A ~P_* B ) ` R ) Y ) <-> ( ( X e. _V /\ Y e. _V ) /\ ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) ) with typecode |-
26 simpr XVYVXAYBRX=YXAYBRX=Y
27 1 adantr φXAAU
28 simpr φXAXA
29 27 28 ssexd φXAXV
30 29 ex φXAXV
31 2 adantr φYBBV
32 simpr φYBYB
33 31 32 ssexd φYBYV
34 33 ex φYBYV
35 30 34 anim12d φXAYBXVYV
36 35 adantrd φXAYBRX=YXVYV
37 36 ancrd φXAYBRX=YXVYVXAYBRX=Y
38 26 37 impbid2 φXVYVXAYBRX=YXAYBRX=Y
39 8 25 38 3bitrd Could not format ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) : No typesetting found for |- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) with typecode |-