Metamath Proof Explorer


Theorem brabd

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses brabd.exa φ A U
brabd.exb φ B V
brabd.def φ R = x y | ψ
brabd.is φ x = A y = B ψ χ
Assertion brabd φ A R B χ

Proof

Step Hyp Ref Expression
1 brabd.exa φ A U
2 brabd.exb φ B V
3 brabd.def φ R = x y | ψ
4 brabd.is φ x = A y = B ψ χ
5 ax-5 φ x φ
6 ax-5 φ y φ
7 nfvd φ x χ
8 nfvd φ y χ
9 5 6 7 8 1 2 3 4 brabd0 φ A R B χ