Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Extended real and complex numbers, real and complex projective lines
Complements on class abstractions of ordered pairs and binary relations
brabd
Metamath Proof Explorer
Description: Expressing that two sets are related by a binary relation which is
expressed as a class abstraction of ordered pairs. (Contributed by BJ , 17-Dec-2023)
Ref
Expression
Hypotheses
brabd.exa
⊢ φ → A ∈ U
brabd.exb
⊢ φ → B ∈ V
brabd.def
⊢ φ → R = x y | ψ
brabd.is
⊢ φ ∧ x = A ∧ y = B → ψ ↔ χ
Assertion
brabd
⊢ φ → A R B ↔ χ
Proof
Step
Hyp
Ref
Expression
1
brabd.exa
⊢ φ → A ∈ U
2
brabd.exb
⊢ φ → B ∈ V
3
brabd.def
⊢ φ → R = x y | ψ
4
brabd.is
⊢ φ ∧ x = A ∧ y = B → ψ ↔ χ
5
ax-5
⊢ φ → ∀ x φ
6
ax-5
⊢ φ → ∀ y φ
7
nfvd
⊢ φ → Ⅎ x χ
8
nfvd
⊢ φ → Ⅎ y χ
9
5 6 7 8 1 2 3 4
brabd0
⊢ φ → A R B ↔ χ