Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brabd.exa | |- ( ph -> A e. U ) |
|
brabd.exb | |- ( ph -> B e. V ) |
||
brabd.def | |- ( ph -> R = { <. x , y >. | ps } ) |
||
brabd.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
Assertion | brabd | |- ( ph -> ( A R B <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brabd.exa | |- ( ph -> A e. U ) |
|
2 | brabd.exb | |- ( ph -> B e. V ) |
|
3 | brabd.def | |- ( ph -> R = { <. x , y >. | ps } ) |
|
4 | brabd.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
5 | ax-5 | |- ( ph -> A. x ph ) |
|
6 | ax-5 | |- ( ph -> A. y ph ) |
|
7 | nfvd | |- ( ph -> F/ x ch ) |
|
8 | nfvd | |- ( ph -> F/ y ch ) |
|
9 | 5 6 7 8 1 2 3 4 | brabd0 | |- ( ph -> ( A R B <-> ch ) ) |