Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brabd.exa | |- ( ph -> A e. U ) | |
| brabd.exb | |- ( ph -> B e. V ) | ||
| brabd.def | |- ( ph -> R = { <. x , y >. | ps } ) | ||
| brabd.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | ||
| Assertion | brabd | |- ( ph -> ( A R B <-> ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brabd.exa | |- ( ph -> A e. U ) | |
| 2 | brabd.exb | |- ( ph -> B e. V ) | |
| 3 | brabd.def |  |-  ( ph -> R = { <. x , y >. | ps } ) | |
| 4 | brabd.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | |
| 5 | ax-5 | |- ( ph -> A. x ph ) | |
| 6 | ax-5 | |- ( ph -> A. y ph ) | |
| 7 | nfvd | |- ( ph -> F/ x ch ) | |
| 8 | nfvd | |- ( ph -> F/ y ch ) | |
| 9 | 5 6 7 8 1 2 3 4 | brabd0 | |- ( ph -> ( A R B <-> ch ) ) |