Metamath Proof Explorer


Theorem brabd

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses brabd.exa
|- ( ph -> A e. U )
brabd.exb
|- ( ph -> B e. V )
brabd.def
|- ( ph -> R = { <. x , y >. | ps } )
brabd.is
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion brabd
|- ( ph -> ( A R B <-> ch ) )

Proof

Step Hyp Ref Expression
1 brabd.exa
 |-  ( ph -> A e. U )
2 brabd.exb
 |-  ( ph -> B e. V )
3 brabd.def
 |-  ( ph -> R = { <. x , y >. | ps } )
4 brabd.is
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
5 ax-5
 |-  ( ph -> A. x ph )
6 ax-5
 |-  ( ph -> A. y ph )
7 nfvd
 |-  ( ph -> F/ x ch )
8 nfvd
 |-  ( ph -> F/ y ch )
9 5 6 7 8 1 2 3 4 brabd0
 |-  ( ph -> ( A R B <-> ch ) )