Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for BJ Extended real and complex numbers, real and complex projective lines Complements on class abstractions of ordered pairs and binary relations brabd  
				
		 
		
			
		 
		Description:   Expressing that two sets are related by a binary relation which is
       expressed as a class abstraction of ordered pairs.  (Contributed by BJ , 17-Dec-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						brabd.exa ⊢  ( 𝜑   →  𝐴   ∈  𝑈  )  
					
						brabd.exb ⊢  ( 𝜑   →  𝐵   ∈  𝑉  )  
					
						brabd.def ⊢  ( 𝜑   →  𝑅   =  { 〈 𝑥  ,  𝑦  〉  ∣  𝜓  } )  
					
						brabd.is ⊢  ( ( 𝜑   ∧  ( 𝑥   =  𝐴   ∧  𝑦   =  𝐵  ) )  →  ( 𝜓   ↔  𝜒  ) )  
				
					Assertion 
					brabd ⊢   ( 𝜑   →  ( 𝐴  𝑅  𝐵   ↔  𝜒  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							brabd.exa ⊢  ( 𝜑   →  𝐴   ∈  𝑈  )  
						
							2 
								
							 
							brabd.exb ⊢  ( 𝜑   →  𝐵   ∈  𝑉  )  
						
							3 
								
							 
							brabd.def ⊢  ( 𝜑   →  𝑅   =  { 〈 𝑥  ,  𝑦  〉  ∣  𝜓  } )  
						
							4 
								
							 
							brabd.is ⊢  ( ( 𝜑   ∧  ( 𝑥   =  𝐴   ∧  𝑦   =  𝐵  ) )  →  ( 𝜓   ↔  𝜒  ) )  
						
							5 
								
							 
							ax-5 ⊢  ( 𝜑   →  ∀ 𝑥  𝜑  )  
						
							6 
								
							 
							ax-5 ⊢  ( 𝜑   →  ∀ 𝑦  𝜑  )  
						
							7 
								
							 
							nfvd ⊢  ( 𝜑   →  Ⅎ 𝑥  𝜒  )  
						
							8 
								
							 
							nfvd ⊢  ( 𝜑   →  Ⅎ 𝑦  𝜒  )  
						
							9 
								5  6  7  8  1  2  3  4 
							 
							brabd0 ⊢  ( 𝜑   →  ( 𝐴  𝑅  𝐵   ↔  𝜒  ) )