Metamath Proof Explorer


Theorem brabd

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses brabd.exa ( 𝜑𝐴𝑈 )
brabd.exb ( 𝜑𝐵𝑉 )
brabd.def ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
brabd.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion brabd ( 𝜑 → ( 𝐴 𝑅 𝐵𝜒 ) )

Proof

Step Hyp Ref Expression
1 brabd.exa ( 𝜑𝐴𝑈 )
2 brabd.exb ( 𝜑𝐵𝑉 )
3 brabd.def ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
4 brabd.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
5 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
6 ax-5 ( 𝜑 → ∀ 𝑦 𝜑 )
7 nfvd ( 𝜑 → Ⅎ 𝑥 𝜒 )
8 nfvd ( 𝜑 → Ⅎ 𝑦 𝜒 )
9 5 6 7 8 1 2 3 4 brabd0 ( 𝜑 → ( 𝐴 𝑅 𝐵𝜒 ) )