Description: "Unbounded" version of brab2a . (Contributed by BJ, 25-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-brab2a1.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| bj-brab2a1.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | ||
| Assertion | bj-brab2a1 | ⊢ ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-brab2a1.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | bj-brab2a1.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 3 4 | pm3.2i | ⊢ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) | 
| 6 | 5 | biantrur | ⊢ ( 𝜑 ↔ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ 𝜑 ) ) | 
| 7 | 6 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ 𝜑 ) } | 
| 8 | 2 7 | eqtri | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ 𝜑 ) } | 
| 9 | 1 8 | brab2a | ⊢ ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜓 ) ) |