Description: "Unbounded" version of brab2a . (Contributed by BJ, 25-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-brab2a1.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
bj-brab2a1.2 | |- R = { <. x , y >. | ph } |
||
Assertion | bj-brab2a1 | |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-brab2a1.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
2 | bj-brab2a1.2 | |- R = { <. x , y >. | ph } |
|
3 | vex | |- x e. _V |
|
4 | vex | |- y e. _V |
|
5 | 3 4 | pm3.2i | |- ( x e. _V /\ y e. _V ) |
6 | 5 | biantrur | |- ( ph <-> ( ( x e. _V /\ y e. _V ) /\ ph ) ) |
7 | 6 | opabbii | |- { <. x , y >. | ph } = { <. x , y >. | ( ( x e. _V /\ y e. _V ) /\ ph ) } |
8 | 2 7 | eqtri | |- R = { <. x , y >. | ( ( x e. _V /\ y e. _V ) /\ ph ) } |
9 | 1 8 | brab2a | |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) ) |