Description: "Unbounded" version of brab2a . (Contributed by BJ, 25-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-brab2a1.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) | |
| bj-brab2a1.2 | |- R = { <. x , y >. | ph } | ||
| Assertion | bj-brab2a1 | |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-brab2a1.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) | |
| 2 | bj-brab2a1.2 |  |-  R = { <. x , y >. | ph } | |
| 3 | vex | |- x e. _V | |
| 4 | vex | |- y e. _V | |
| 5 | 3 4 | pm3.2i | |- ( x e. _V /\ y e. _V ) | 
| 6 | 5 | biantrur | |- ( ph <-> ( ( x e. _V /\ y e. _V ) /\ ph ) ) | 
| 7 | 6 | opabbii |  |-  { <. x , y >. | ph } = { <. x , y >. | ( ( x e. _V /\ y e. _V ) /\ ph ) } | 
| 8 | 2 7 | eqtri |  |-  R = { <. x , y >. | ( ( x e. _V /\ y e. _V ) /\ ph ) } | 
| 9 | 1 8 | brab2a | |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) ) |