Metamath Proof Explorer


Theorem bj-brab2a1

Description: "Unbounded" version of brab2a . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-brab2a1.1
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
bj-brab2a1.2
|- R = { <. x , y >. | ph }
Assertion bj-brab2a1
|- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) )

Proof

Step Hyp Ref Expression
1 bj-brab2a1.1
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
2 bj-brab2a1.2
 |-  R = { <. x , y >. | ph }
3 vex
 |-  x e. _V
4 vex
 |-  y e. _V
5 3 4 pm3.2i
 |-  ( x e. _V /\ y e. _V )
6 5 biantrur
 |-  ( ph <-> ( ( x e. _V /\ y e. _V ) /\ ph ) )
7 6 opabbii
 |-  { <. x , y >. | ph } = { <. x , y >. | ( ( x e. _V /\ y e. _V ) /\ ph ) }
8 2 7 eqtri
 |-  R = { <. x , y >. | ( ( x e. _V /\ y e. _V ) /\ ph ) }
9 1 8 brab2a
 |-  ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) )