Metamath Proof Explorer


Theorem bj-brab2a1

Description: "Unbounded" version of brab2a . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-brab2a1.1 x = A y = B φ ψ
bj-brab2a1.2 R = x y | φ
Assertion bj-brab2a1 A R B A V B V ψ

Proof

Step Hyp Ref Expression
1 bj-brab2a1.1 x = A y = B φ ψ
2 bj-brab2a1.2 R = x y | φ
3 vex x V
4 vex y V
5 3 4 pm3.2i x V y V
6 5 biantrur φ x V y V φ
7 6 opabbii x y | φ = x y | x V y V φ
8 2 7 eqtri R = x y | x V y V φ
9 1 8 brab2a A R B A V B V ψ