Metamath Proof Explorer


Theorem brabd0

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses brabd0.x ( 𝜑 → ∀ 𝑥 𝜑 )
brabd0.y ( 𝜑 → ∀ 𝑦 𝜑 )
brabd0.xch ( 𝜑 → Ⅎ 𝑥 𝜒 )
brabd0.ych ( 𝜑 → Ⅎ 𝑦 𝜒 )
brabd0.exa ( 𝜑𝐴𝑈 )
brabd0.exb ( 𝜑𝐵𝑉 )
brabd0.def ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
brabd0.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion brabd0 ( 𝜑 → ( 𝐴 𝑅 𝐵𝜒 ) )

Proof

Step Hyp Ref Expression
1 brabd0.x ( 𝜑 → ∀ 𝑥 𝜑 )
2 brabd0.y ( 𝜑 → ∀ 𝑦 𝜑 )
3 brabd0.xch ( 𝜑 → Ⅎ 𝑥 𝜒 )
4 brabd0.ych ( 𝜑 → Ⅎ 𝑦 𝜒 )
5 brabd0.exa ( 𝜑𝐴𝑈 )
6 brabd0.exb ( 𝜑𝐵𝑉 )
7 brabd0.def ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
8 brabd0.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
9 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
10 7 eleq2d ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) )
11 9 10 syl5bb ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) )
12 1 2 3 4 5 6 8 opelopabd ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ 𝜒 ) )
13 11 12 bitrd ( 𝜑 → ( 𝐴 𝑅 𝐵𝜒 ) )