Metamath Proof Explorer


Theorem brabd0

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses brabd0.x φ x φ
brabd0.y φ y φ
brabd0.xch φ x χ
brabd0.ych φ y χ
brabd0.exa φ A U
brabd0.exb φ B V
brabd0.def φ R = x y | ψ
brabd0.is φ x = A y = B ψ χ
Assertion brabd0 φ A R B χ

Proof

Step Hyp Ref Expression
1 brabd0.x φ x φ
2 brabd0.y φ y φ
3 brabd0.xch φ x χ
4 brabd0.ych φ y χ
5 brabd0.exa φ A U
6 brabd0.exb φ B V
7 brabd0.def φ R = x y | ψ
8 brabd0.is φ x = A y = B ψ χ
9 df-br A R B A B R
10 7 eleq2d φ A B R A B x y | ψ
11 9 10 syl5bb φ A R B A B x y | ψ
12 1 2 3 4 5 6 8 opelopabd φ A B x y | ψ χ
13 11 12 bitrd φ A R B χ