Metamath Proof Explorer


Theorem brabd0

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses brabd0.x
|- ( ph -> A. x ph )
brabd0.y
|- ( ph -> A. y ph )
brabd0.xch
|- ( ph -> F/ x ch )
brabd0.ych
|- ( ph -> F/ y ch )
brabd0.exa
|- ( ph -> A e. U )
brabd0.exb
|- ( ph -> B e. V )
brabd0.def
|- ( ph -> R = { <. x , y >. | ps } )
brabd0.is
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion brabd0
|- ( ph -> ( A R B <-> ch ) )

Proof

Step Hyp Ref Expression
1 brabd0.x
 |-  ( ph -> A. x ph )
2 brabd0.y
 |-  ( ph -> A. y ph )
3 brabd0.xch
 |-  ( ph -> F/ x ch )
4 brabd0.ych
 |-  ( ph -> F/ y ch )
5 brabd0.exa
 |-  ( ph -> A e. U )
6 brabd0.exb
 |-  ( ph -> B e. V )
7 brabd0.def
 |-  ( ph -> R = { <. x , y >. | ps } )
8 brabd0.is
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
9 df-br
 |-  ( A R B <-> <. A , B >. e. R )
10 7 eleq2d
 |-  ( ph -> ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ps } ) )
11 9 10 syl5bb
 |-  ( ph -> ( A R B <-> <. A , B >. e. { <. x , y >. | ps } ) )
12 1 2 3 4 5 6 8 opelopabd
 |-  ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) )
13 11 12 bitrd
 |-  ( ph -> ( A R B <-> ch ) )