Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brabd0.x | |- ( ph -> A. x ph ) | |
| brabd0.y | |- ( ph -> A. y ph ) | ||
| brabd0.xch | |- ( ph -> F/ x ch ) | ||
| brabd0.ych | |- ( ph -> F/ y ch ) | ||
| brabd0.exa | |- ( ph -> A e. U ) | ||
| brabd0.exb | |- ( ph -> B e. V ) | ||
| brabd0.def | |- ( ph -> R = { <. x , y >. | ps } ) | ||
| brabd0.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | ||
| Assertion | brabd0 | |- ( ph -> ( A R B <-> ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brabd0.x | |- ( ph -> A. x ph ) | |
| 2 | brabd0.y | |- ( ph -> A. y ph ) | |
| 3 | brabd0.xch | |- ( ph -> F/ x ch ) | |
| 4 | brabd0.ych | |- ( ph -> F/ y ch ) | |
| 5 | brabd0.exa | |- ( ph -> A e. U ) | |
| 6 | brabd0.exb | |- ( ph -> B e. V ) | |
| 7 | brabd0.def |  |-  ( ph -> R = { <. x , y >. | ps } ) | |
| 8 | brabd0.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | |
| 9 | df-br | |- ( A R B <-> <. A , B >. e. R ) | |
| 10 | 7 | eleq2d |  |-  ( ph -> ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ps } ) ) | 
| 11 | 9 10 | bitrid |  |-  ( ph -> ( A R B <-> <. A , B >. e. { <. x , y >. | ps } ) ) | 
| 12 | 1 2 3 4 5 6 8 | opelopabd |  |-  ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) ) | 
| 13 | 11 12 | bitrd | |- ( ph -> ( A R B <-> ch ) ) |