Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brabd0.x | |- ( ph -> A. x ph ) |
|
brabd0.y | |- ( ph -> A. y ph ) |
||
brabd0.xch | |- ( ph -> F/ x ch ) |
||
brabd0.ych | |- ( ph -> F/ y ch ) |
||
brabd0.exa | |- ( ph -> A e. U ) |
||
brabd0.exb | |- ( ph -> B e. V ) |
||
brabd0.def | |- ( ph -> R = { <. x , y >. | ps } ) |
||
brabd0.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
Assertion | brabd0 | |- ( ph -> ( A R B <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brabd0.x | |- ( ph -> A. x ph ) |
|
2 | brabd0.y | |- ( ph -> A. y ph ) |
|
3 | brabd0.xch | |- ( ph -> F/ x ch ) |
|
4 | brabd0.ych | |- ( ph -> F/ y ch ) |
|
5 | brabd0.exa | |- ( ph -> A e. U ) |
|
6 | brabd0.exb | |- ( ph -> B e. V ) |
|
7 | brabd0.def | |- ( ph -> R = { <. x , y >. | ps } ) |
|
8 | brabd0.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
9 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
10 | 7 | eleq2d | |- ( ph -> ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ps } ) ) |
11 | 9 10 | syl5bb | |- ( ph -> ( A R B <-> <. A , B >. e. { <. x , y >. | ps } ) ) |
12 | 1 2 3 4 5 6 8 | opelopabd | |- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) ) |
13 | 11 12 | bitrd | |- ( ph -> ( A R B <-> ch ) ) |