Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopabd.xph | |- ( ph -> A. x ph ) |
|
opelopabd.yph | |- ( ph -> A. y ph ) |
||
opelopabd.xch | |- ( ph -> F/ x ch ) |
||
opelopabd.ych | |- ( ph -> F/ y ch ) |
||
opelopabd.exa | |- ( ph -> A e. U ) |
||
opelopabd.exb | |- ( ph -> B e. V ) |
||
opelopabd.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
Assertion | opelopabd | |- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabd.xph | |- ( ph -> A. x ph ) |
|
2 | opelopabd.yph | |- ( ph -> A. y ph ) |
|
3 | opelopabd.xch | |- ( ph -> F/ x ch ) |
|
4 | opelopabd.ych | |- ( ph -> F/ y ch ) |
|
5 | opelopabd.exa | |- ( ph -> A e. U ) |
|
6 | opelopabd.exb | |- ( ph -> B e. V ) |
|
7 | opelopabd.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
8 | elopab | |- ( <. A , B >. e. { <. x , y >. | ps } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) ) |
|
9 | 1 2 3 4 5 6 7 | copsex2d | |- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) ) |
10 | 8 9 | syl5bb | |- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) ) |