Metamath Proof Explorer


Theorem opelopabd

Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses opelopabd.xph
|- ( ph -> A. x ph )
opelopabd.yph
|- ( ph -> A. y ph )
opelopabd.xch
|- ( ph -> F/ x ch )
opelopabd.ych
|- ( ph -> F/ y ch )
opelopabd.exa
|- ( ph -> A e. U )
opelopabd.exb
|- ( ph -> B e. V )
opelopabd.is
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion opelopabd
|- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) )

Proof

Step Hyp Ref Expression
1 opelopabd.xph
 |-  ( ph -> A. x ph )
2 opelopabd.yph
 |-  ( ph -> A. y ph )
3 opelopabd.xch
 |-  ( ph -> F/ x ch )
4 opelopabd.ych
 |-  ( ph -> F/ y ch )
5 opelopabd.exa
 |-  ( ph -> A e. U )
6 opelopabd.exb
 |-  ( ph -> B e. V )
7 opelopabd.is
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
8 elopab
 |-  ( <. A , B >. e. { <. x , y >. | ps } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) )
9 1 2 3 4 5 6 7 copsex2d
 |-  ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) )
10 8 9 syl5bb
 |-  ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ch ) )