Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopabd.xph | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
opelopabd.yph | ⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) | ||
opelopabd.xch | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
opelopabd.ych | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) | ||
opelopabd.exa | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
opelopabd.exb | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
opelopabd.is | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | opelopabd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabd.xph | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
2 | opelopabd.yph | ⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) | |
3 | opelopabd.xch | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
4 | opelopabd.ych | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) | |
5 | opelopabd.exa | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
6 | opelopabd.exb | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
7 | opelopabd.is | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
8 | elopab | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) | |
9 | 1 2 3 4 5 6 7 | copsex2d | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ 𝜒 ) ) |
10 | 8 9 | syl5bb | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ 𝜒 ) ) |