Metamath Proof Explorer


Theorem opelopabd

Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses opelopabd.xph ( 𝜑 → ∀ 𝑥 𝜑 )
opelopabd.yph ( 𝜑 → ∀ 𝑦 𝜑 )
opelopabd.xch ( 𝜑 → Ⅎ 𝑥 𝜒 )
opelopabd.ych ( 𝜑 → Ⅎ 𝑦 𝜒 )
opelopabd.exa ( 𝜑𝐴𝑈 )
opelopabd.exb ( 𝜑𝐵𝑉 )
opelopabd.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion opelopabd ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 opelopabd.xph ( 𝜑 → ∀ 𝑥 𝜑 )
2 opelopabd.yph ( 𝜑 → ∀ 𝑦 𝜑 )
3 opelopabd.xch ( 𝜑 → Ⅎ 𝑥 𝜒 )
4 opelopabd.ych ( 𝜑 → Ⅎ 𝑦 𝜒 )
5 opelopabd.exa ( 𝜑𝐴𝑈 )
6 opelopabd.exb ( 𝜑𝐵𝑉 )
7 opelopabd.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
8 elopab ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
9 1 2 3 4 5 6 7 copsex2d ( 𝜑 → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) )
10 8 9 syl5bb ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ 𝜒 ) )