Metamath Proof Explorer


Theorem opelopabb

Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses opelopabb.xph
|- ( ph -> A. x ph )
opelopabb.yph
|- ( ph -> A. y ph )
opelopabb.xch
|- ( ph -> F/ x ch )
opelopabb.ych
|- ( ph -> F/ y ch )
opelopabb.is
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion opelopabb
|- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 opelopabb.xph
 |-  ( ph -> A. x ph )
2 opelopabb.yph
 |-  ( ph -> A. y ph )
3 opelopabb.xch
 |-  ( ph -> F/ x ch )
4 opelopabb.ych
 |-  ( ph -> F/ y ch )
5 opelopabb.is
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
6 elopab
 |-  ( <. A , B >. e. { <. x , y >. | ps } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) )
7 1 2 3 4 5 copsex2b
 |-  ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) )
8 6 7 syl5bb
 |-  ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) )