Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopabb.xph | |- ( ph -> A. x ph ) | |
| opelopabb.yph | |- ( ph -> A. y ph ) | ||
| opelopabb.xch | |- ( ph -> F/ x ch ) | ||
| opelopabb.ych | |- ( ph -> F/ y ch ) | ||
| opelopabb.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | ||
| Assertion | opelopabb | |- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelopabb.xph | |- ( ph -> A. x ph ) | |
| 2 | opelopabb.yph | |- ( ph -> A. y ph ) | |
| 3 | opelopabb.xch | |- ( ph -> F/ x ch ) | |
| 4 | opelopabb.ych | |- ( ph -> F/ y ch ) | |
| 5 | opelopabb.is | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | |
| 6 | elopab |  |-  ( <. A , B >. e. { <. x , y >. | ps } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) ) | |
| 7 | 1 2 3 4 5 | copsex2b | |- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) ) | 
| 8 | 6 7 | bitrid |  |-  ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) ) |