Metamath Proof Explorer


Theorem opelopabbv

Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses opelopabbv.def
|- ( ph -> R = { <. x , y >. | ps } )
opelopabbv.is
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion opelopabbv
|- ( ph -> ( <. A , B >. e. R <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 opelopabbv.def
 |-  ( ph -> R = { <. x , y >. | ps } )
2 opelopabbv.is
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
3 1 eleq2d
 |-  ( ph -> ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ps } ) )
4 ax-5
 |-  ( ph -> A. x ph )
5 ax-5
 |-  ( ph -> A. y ph )
6 nfvd
 |-  ( ph -> F/ x ch )
7 nfvd
 |-  ( ph -> F/ y ch )
8 4 5 6 7 2 opelopabb
 |-  ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) )
9 3 8 bitrd
 |-  ( ph -> ( <. A , B >. e. R <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) )