Step |
Hyp |
Ref |
Expression |
1 |
|
opelopabbv.def |
|- ( ph -> R = { <. x , y >. | ps } ) |
2 |
|
opelopabbv.is |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
3 |
1
|
eleq2d |
|- ( ph -> ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ps } ) ) |
4 |
|
ax-5 |
|- ( ph -> A. x ph ) |
5 |
|
ax-5 |
|- ( ph -> A. y ph ) |
6 |
|
nfvd |
|- ( ph -> F/ x ch ) |
7 |
|
nfvd |
|- ( ph -> F/ y ch ) |
8 |
4 5 6 7 2
|
opelopabb |
|- ( ph -> ( <. A , B >. e. { <. x , y >. | ps } <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) ) |
9 |
3 8
|
bitrd |
|- ( ph -> ( <. A , B >. e. R <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) ) |