Metamath Proof Explorer


Theorem opelopabbv

Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses opelopabbv.def ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
opelopabbv.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion opelopabbv ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 opelopabbv.def ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
2 opelopabbv.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
3 1 eleq2d ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) )
4 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
5 ax-5 ( 𝜑 → ∀ 𝑦 𝜑 )
6 nfvd ( 𝜑 → Ⅎ 𝑥 𝜒 )
7 nfvd ( 𝜑 → Ⅎ 𝑦 𝜒 )
8 4 5 6 7 2 opelopabb ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )
9 3 8 bitrd ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )