Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopabbv.def | ⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ) | |
opelopabbv.is | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | opelopabbv | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabbv.def | ⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ) | |
2 | opelopabbv.is | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 1 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ) ) |
4 | ax-5 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
5 | ax-5 | ⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) | |
6 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
7 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) | |
8 | 4 5 6 7 2 | opelopabb | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |
9 | 3 8 | bitrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |