Description: The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 , which could be proved from it. (Contributed by BJ, 27-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-opelrelex | ⊢ ( ( Rel 𝑅 ∧ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel | ⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) | |
2 | 1 | biimpi | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( V × V ) ) |
3 | 2 | sselda | ⊢ ( ( Rel 𝑅 ∧ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) |
4 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
5 | 3 4 | sylib | ⊢ ( ( Rel 𝑅 ∧ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |