Metamath Proof Explorer


Theorem bj-opelresdm

Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Assertion bj-opelresdm ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑋 ) → 𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 elin ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 ∩ ( 𝑋 × V ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × V ) ) )
2 opelxp1 ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × V ) → 𝐴𝑋 )
3 1 2 simplbiim ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 ∩ ( 𝑋 × V ) ) → 𝐴𝑋 )
4 df-res ( 𝑅𝑋 ) = ( 𝑅 ∩ ( 𝑋 × V ) )
5 3 4 eleq2s ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑋 ) → 𝐴𝑋 )