Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres . (Contributed by BJ, 25-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-opelresdm | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ↾ 𝑋 ) → 𝐴 ∈ 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ∩ ( 𝑋 × V ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × V ) ) ) | |
| 2 | opelxp1 | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × V ) → 𝐴 ∈ 𝑋 ) | |
| 3 | 1 2 | simplbiim | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ∩ ( 𝑋 × V ) ) → 𝐴 ∈ 𝑋 ) | 
| 4 | df-res | ⊢ ( 𝑅 ↾ 𝑋 ) = ( 𝑅 ∩ ( 𝑋 × V ) ) | |
| 5 | 3 4 | eleq2s | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ↾ 𝑋 ) → 𝐴 ∈ 𝑋 ) |