Metamath Proof Explorer


Theorem bj-opelresdm

Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Assertion bj-opelresdm
|- ( <. A , B >. e. ( R |` X ) -> A e. X )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( <. A , B >. e. ( R i^i ( X X. _V ) ) <-> ( <. A , B >. e. R /\ <. A , B >. e. ( X X. _V ) ) )
2 opelxp1
 |-  ( <. A , B >. e. ( X X. _V ) -> A e. X )
3 1 2 simplbiim
 |-  ( <. A , B >. e. ( R i^i ( X X. _V ) ) -> A e. X )
4 df-res
 |-  ( R |` X ) = ( R i^i ( X X. _V ) )
5 3 4 eleq2s
 |-  ( <. A , B >. e. ( R |` X ) -> A e. X )