Metamath Proof Explorer


Theorem bj-opelrelex

Description: The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 , which could be proved from it. (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-opelrelex
|- ( ( Rel R /\ <. A , B >. e. R ) -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 df-rel
 |-  ( Rel R <-> R C_ ( _V X. _V ) )
2 1 biimpi
 |-  ( Rel R -> R C_ ( _V X. _V ) )
3 2 sselda
 |-  ( ( Rel R /\ <. A , B >. e. R ) -> <. A , B >. e. ( _V X. _V ) )
4 opelxp
 |-  ( <. A , B >. e. ( _V X. _V ) <-> ( A e. _V /\ B e. _V ) )
5 3 4 sylib
 |-  ( ( Rel R /\ <. A , B >. e. R ) -> ( A e. _V /\ B e. _V ) )