Metamath Proof Explorer


Theorem opelopabbv

Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023)

Ref Expression
Hypotheses opelopabbv.def φ R = x y | ψ
opelopabbv.is φ x = A y = B ψ χ
Assertion opelopabbv φ A B R A V B V χ

Proof

Step Hyp Ref Expression
1 opelopabbv.def φ R = x y | ψ
2 opelopabbv.is φ x = A y = B ψ χ
3 1 eleq2d φ A B R A B x y | ψ
4 ax-5 φ x φ
5 ax-5 φ y φ
6 nfvd φ x χ
7 nfvd φ y χ
8 4 5 6 7 2 opelopabb φ A B x y | ψ A V B V χ
9 3 8 bitrd φ A B R A V B V χ