Metamath Proof Explorer


Theorem bj-imdirval3

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval3.exa ( 𝜑𝐴𝑈 )
bj-imdirval3.exb ( 𝜑𝐵𝑉 )
bj-imdirval3.arg ( 𝜑𝑅 ⊆ ( 𝐴 × 𝐵 ) )
Assertion bj-imdirval3 ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 bj-imdirval3.exa ( 𝜑𝐴𝑈 )
2 bj-imdirval3.exb ( 𝜑𝐵𝑉 )
3 bj-imdirval3.arg ( 𝜑𝑅 ⊆ ( 𝐴 × 𝐵 ) )
4 1 2 3 bj-imdirval2 ( 𝜑 → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑅𝑥 ) = 𝑦 ) } )
5 4 breqd ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑅𝑥 ) = 𝑦 ) } 𝑌 ) )
6 brabv ( 𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑅𝑥 ) = 𝑦 ) } 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
7 5 6 syl6bi ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
8 7 pm4.71rd ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ) ) )
9 simpl ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑋 ∈ V )
10 9 adantl ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → 𝑋 ∈ V )
11 simpr ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑌 ∈ V )
12 11 adantl ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → 𝑌 ∈ V )
13 4 adantr ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑅𝑥 ) = 𝑦 ) } )
14 simpl ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑥 = 𝑋 )
15 14 sseq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥𝐴𝑋𝐴 ) )
16 simpr ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑦 = 𝑌 )
17 16 sseq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑦𝐵𝑌𝐵 ) )
18 15 17 anbi12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝑥𝐴𝑦𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) ) )
19 imaeq2 ( 𝑥 = 𝑋 → ( 𝑅𝑥 ) = ( 𝑅𝑋 ) )
20 id ( 𝑦 = 𝑌𝑦 = 𝑌 )
21 19 20 eqeqan12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝑅𝑥 ) = 𝑦 ↔ ( 𝑅𝑋 ) = 𝑌 ) )
22 18 21 anbi12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑅𝑥 ) = 𝑦 ) ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) )
23 22 adantl ( ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑅𝑥 ) = 𝑦 ) ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) )
24 10 12 13 23 brabd ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) )
25 24 pm5.32da ( 𝜑 → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ) ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) ) )
26 simpr ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) )
27 1 adantr ( ( 𝜑𝑋𝐴 ) → 𝐴𝑈 )
28 simpr ( ( 𝜑𝑋𝐴 ) → 𝑋𝐴 )
29 27 28 ssexd ( ( 𝜑𝑋𝐴 ) → 𝑋 ∈ V )
30 29 ex ( 𝜑 → ( 𝑋𝐴𝑋 ∈ V ) )
31 2 adantr ( ( 𝜑𝑌𝐵 ) → 𝐵𝑉 )
32 simpr ( ( 𝜑𝑌𝐵 ) → 𝑌𝐵 )
33 31 32 ssexd ( ( 𝜑𝑌𝐵 ) → 𝑌 ∈ V )
34 33 ex ( 𝜑 → ( 𝑌𝐵𝑌 ∈ V ) )
35 30 34 anim12d ( 𝜑 → ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
36 35 adantrd ( 𝜑 → ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
37 36 ancrd ( 𝜑 → ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) ) )
38 26 37 impbid2 ( 𝜑 → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) )
39 8 25 38 3bitrd ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑅𝑋 ) = 𝑌 ) ) )