Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirval3.exa |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
2 |
|
bj-imdirval3.exb |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
bj-imdirval3.arg |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝐴 × 𝐵 ) ) |
4 |
1 2 3
|
bj-imdirval2 |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } ) |
5 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } 𝑌 ) ) |
6 |
|
brabv |
⊢ ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
7 |
5 6
|
syl6bi |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
8 |
7
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑋 ∈ V ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → 𝑋 ∈ V ) |
11 |
|
simpr |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑌 ∈ V ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → 𝑌 ∈ V ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) } ) |
14 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
15 |
14
|
sseq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
16 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
17 |
16
|
sseq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑦 ⊆ 𝐵 ↔ 𝑌 ⊆ 𝐵 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ) ) |
19 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 “ 𝑥 ) = ( 𝑅 “ 𝑋 ) ) |
20 |
|
id |
⊢ ( 𝑦 = 𝑌 → 𝑦 = 𝑌 ) |
21 |
19 20
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑅 “ 𝑥 ) = 𝑦 ↔ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) |
22 |
18 21
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) |
24 |
10 12 13 23
|
brabd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) |
25 |
24
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ) ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) |
27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝐴 ) → 𝐴 ∈ 𝑈 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ⊆ 𝐴 ) |
29 |
27 28
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ∈ V ) |
30 |
29
|
ex |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝐴 → 𝑋 ∈ V ) ) |
31 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ⊆ 𝐵 ) → 𝐵 ∈ 𝑉 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ⊆ 𝐵 ) → 𝑌 ⊆ 𝐵 ) |
33 |
31 32
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑌 ⊆ 𝐵 ) → 𝑌 ∈ V ) |
34 |
33
|
ex |
⊢ ( 𝜑 → ( 𝑌 ⊆ 𝐵 → 𝑌 ∈ V ) ) |
35 |
30 34
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
36 |
35
|
adantrd |
⊢ ( 𝜑 → ( ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
37 |
36
|
ancrd |
⊢ ( 𝜑 → ( ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) ) |
38 |
26 37
|
impbid2 |
⊢ ( 𝜑 → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) |
39 |
8 25 38
|
3bitrd |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐴 𝒫* 𝐵 ) ‘ 𝑅 ) 𝑌 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) ∧ ( 𝑅 “ 𝑋 ) = 𝑌 ) ) ) |