| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-imdirval3.exa |
|- ( ph -> A e. U ) |
| 2 |
|
bj-imdirval3.exb |
|- ( ph -> B e. V ) |
| 3 |
|
bj-imdirval3.arg |
|- ( ph -> R C_ ( A X. B ) ) |
| 4 |
1 2 3
|
bj-imdirval2 |
|- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) |
| 5 |
4
|
breqd |
|- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> X { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } Y ) ) |
| 6 |
|
brabv |
|- ( X { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } Y -> ( X e. _V /\ Y e. _V ) ) |
| 7 |
5 6
|
biimtrdi |
|- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y -> ( X e. _V /\ Y e. _V ) ) ) |
| 8 |
7
|
pm4.71rd |
|- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X e. _V /\ Y e. _V ) /\ X ( ( A ~P_* B ) ` R ) Y ) ) ) |
| 9 |
|
simpl |
|- ( ( X e. _V /\ Y e. _V ) -> X e. _V ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> X e. _V ) |
| 11 |
|
simpr |
|- ( ( X e. _V /\ Y e. _V ) -> Y e. _V ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> Y e. _V ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) |
| 14 |
|
simpl |
|- ( ( x = X /\ y = Y ) -> x = X ) |
| 15 |
14
|
sseq1d |
|- ( ( x = X /\ y = Y ) -> ( x C_ A <-> X C_ A ) ) |
| 16 |
|
simpr |
|- ( ( x = X /\ y = Y ) -> y = Y ) |
| 17 |
16
|
sseq1d |
|- ( ( x = X /\ y = Y ) -> ( y C_ B <-> Y C_ B ) ) |
| 18 |
15 17
|
anbi12d |
|- ( ( x = X /\ y = Y ) -> ( ( x C_ A /\ y C_ B ) <-> ( X C_ A /\ Y C_ B ) ) ) |
| 19 |
|
imaeq2 |
|- ( x = X -> ( R " x ) = ( R " X ) ) |
| 20 |
|
id |
|- ( y = Y -> y = Y ) |
| 21 |
19 20
|
eqeqan12d |
|- ( ( x = X /\ y = Y ) -> ( ( R " x ) = y <-> ( R " X ) = Y ) ) |
| 22 |
18 21
|
anbi12d |
|- ( ( x = X /\ y = Y ) -> ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ ( X e. _V /\ Y e. _V ) ) /\ ( x = X /\ y = Y ) ) -> ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) |
| 24 |
10 12 13 23
|
brabd |
|- ( ( ph /\ ( X e. _V /\ Y e. _V ) ) -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) |
| 25 |
24
|
pm5.32da |
|- ( ph -> ( ( ( X e. _V /\ Y e. _V ) /\ X ( ( A ~P_* B ) ` R ) Y ) <-> ( ( X e. _V /\ Y e. _V ) /\ ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) ) |
| 26 |
|
simpr |
|- ( ( ( X e. _V /\ Y e. _V ) /\ ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) -> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) |
| 27 |
1
|
adantr |
|- ( ( ph /\ X C_ A ) -> A e. U ) |
| 28 |
|
simpr |
|- ( ( ph /\ X C_ A ) -> X C_ A ) |
| 29 |
27 28
|
ssexd |
|- ( ( ph /\ X C_ A ) -> X e. _V ) |
| 30 |
29
|
ex |
|- ( ph -> ( X C_ A -> X e. _V ) ) |
| 31 |
2
|
adantr |
|- ( ( ph /\ Y C_ B ) -> B e. V ) |
| 32 |
|
simpr |
|- ( ( ph /\ Y C_ B ) -> Y C_ B ) |
| 33 |
31 32
|
ssexd |
|- ( ( ph /\ Y C_ B ) -> Y e. _V ) |
| 34 |
33
|
ex |
|- ( ph -> ( Y C_ B -> Y e. _V ) ) |
| 35 |
30 34
|
anim12d |
|- ( ph -> ( ( X C_ A /\ Y C_ B ) -> ( X e. _V /\ Y e. _V ) ) ) |
| 36 |
35
|
adantrd |
|- ( ph -> ( ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) -> ( X e. _V /\ Y e. _V ) ) ) |
| 37 |
36
|
ancrd |
|- ( ph -> ( ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) -> ( ( X e. _V /\ Y e. _V ) /\ ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) ) |
| 38 |
26 37
|
impbid2 |
|- ( ph -> ( ( ( X e. _V /\ Y e. _V ) /\ ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) |
| 39 |
8 25 38
|
3bitrd |
|- ( ph -> ( X ( ( A ~P_* B ) ` R ) Y <-> ( ( X C_ A /\ Y C_ B ) /\ ( R " X ) = Y ) ) ) |