Metamath Proof Explorer


Theorem bj-imdirval2

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval2.exa
|- ( ph -> A e. U )
bj-imdirval2.exb
|- ( ph -> B e. V )
bj-imdirval2.arg
|- ( ph -> R C_ ( A X. B ) )
Assertion bj-imdirval2
|- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } )

Proof

Step Hyp Ref Expression
1 bj-imdirval2.exa
 |-  ( ph -> A e. U )
2 bj-imdirval2.exb
 |-  ( ph -> B e. V )
3 bj-imdirval2.arg
 |-  ( ph -> R C_ ( A X. B ) )
4 1 2 bj-imdirval
 |-  ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) )
5 simpr
 |-  ( ( ph /\ r = R ) -> r = R )
6 5 imaeq1d
 |-  ( ( ph /\ r = R ) -> ( r " x ) = ( R " x ) )
7 6 eqeq1d
 |-  ( ( ph /\ r = R ) -> ( ( r " x ) = y <-> ( R " x ) = y ) )
8 7 anbi2d
 |-  ( ( ph /\ r = R ) -> ( ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) <-> ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) ) )
9 8 opabbidv
 |-  ( ( ph /\ r = R ) -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } )
10 1 2 xpexd
 |-  ( ph -> ( A X. B ) e. _V )
11 10 3 sselpwd
 |-  ( ph -> R e. ~P ( A X. B ) )
12 1 2 bj-imdirval2lem
 |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } e. _V )
13 4 9 11 12 fvmptd
 |-  ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } )