| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirval2.exa |  |-  ( ph -> A e. U ) | 
						
							| 2 |  | bj-imdirval2.exb |  |-  ( ph -> B e. V ) | 
						
							| 3 |  | bj-imdirval2.arg |  |-  ( ph -> R C_ ( A X. B ) ) | 
						
							| 4 | 1 2 | bj-imdirval |  |-  ( ph -> ( A ~P_* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ r = R ) -> r = R ) | 
						
							| 6 | 5 | imaeq1d |  |-  ( ( ph /\ r = R ) -> ( r " x ) = ( R " x ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( ph /\ r = R ) -> ( ( r " x ) = y <-> ( R " x ) = y ) ) | 
						
							| 8 | 7 | anbi2d |  |-  ( ( ph /\ r = R ) -> ( ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) <-> ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) ) ) | 
						
							| 9 | 8 | opabbidv |  |-  ( ( ph /\ r = R ) -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( r " x ) = y ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) | 
						
							| 10 | 1 2 | xpexd |  |-  ( ph -> ( A X. B ) e. _V ) | 
						
							| 11 | 10 3 | sselpwd |  |-  ( ph -> R e. ~P ( A X. B ) ) | 
						
							| 12 | 1 2 | bj-imdirval2lem |  |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } e. _V ) | 
						
							| 13 | 4 9 11 12 | fvmptd |  |-  ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) |