| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirval2lem.exa |  |-  ( ph -> A e. U ) | 
						
							| 2 |  | bj-imdirval2lem.exb |  |-  ( ph -> B e. V ) | 
						
							| 3 | 1 | pwexd |  |-  ( ph -> ~P A e. _V ) | 
						
							| 4 | 2 | pwexd |  |-  ( ph -> ~P B e. _V ) | 
						
							| 5 |  | simprl |  |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> x C_ A ) | 
						
							| 6 |  | velpw |  |-  ( x e. ~P A <-> x C_ A ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> x e. ~P A ) | 
						
							| 8 |  | simprr |  |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> y C_ B ) | 
						
							| 9 |  | velpw |  |-  ( y e. ~P B <-> y C_ B ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> y e. ~P B ) | 
						
							| 11 | 3 4 7 10 | opabex2 |  |-  ( ph -> { <. x , y >. | ( x C_ A /\ y C_ B ) } e. _V ) | 
						
							| 12 |  | simpl |  |-  ( ( ( x C_ A /\ y C_ B ) /\ ps ) -> ( x C_ A /\ y C_ B ) ) | 
						
							| 13 | 12 | ssopab2i |  |-  { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } C_ { <. x , y >. | ( x C_ A /\ y C_ B ) } | 
						
							| 14 | 13 | a1i |  |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } C_ { <. x , y >. | ( x C_ A /\ y C_ B ) } ) | 
						
							| 15 | 11 14 | ssexd |  |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } e. _V ) |