Metamath Proof Explorer


Theorem bj-imdirval2lem

Description: Lemma for bj-imdirval2 and bj-iminvval2 . (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-imdirval2lem.exa
|- ( ph -> A e. U )
bj-imdirval2lem.exb
|- ( ph -> B e. V )
Assertion bj-imdirval2lem
|- ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } e. _V )

Proof

Step Hyp Ref Expression
1 bj-imdirval2lem.exa
 |-  ( ph -> A e. U )
2 bj-imdirval2lem.exb
 |-  ( ph -> B e. V )
3 1 pwexd
 |-  ( ph -> ~P A e. _V )
4 2 pwexd
 |-  ( ph -> ~P B e. _V )
5 simprl
 |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> x C_ A )
6 velpw
 |-  ( x e. ~P A <-> x C_ A )
7 5 6 sylibr
 |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> x e. ~P A )
8 simprr
 |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> y C_ B )
9 velpw
 |-  ( y e. ~P B <-> y C_ B )
10 8 9 sylibr
 |-  ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> y e. ~P B )
11 3 4 7 10 opabex2
 |-  ( ph -> { <. x , y >. | ( x C_ A /\ y C_ B ) } e. _V )
12 simpl
 |-  ( ( ( x C_ A /\ y C_ B ) /\ ps ) -> ( x C_ A /\ y C_ B ) )
13 12 ssopab2i
 |-  { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } C_ { <. x , y >. | ( x C_ A /\ y C_ B ) }
14 13 a1i
 |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } C_ { <. x , y >. | ( x C_ A /\ y C_ B ) } )
15 11 14 ssexd
 |-  ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } e. _V )