Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirval2lem.exa |
|- ( ph -> A e. U ) |
2 |
|
bj-imdirval2lem.exb |
|- ( ph -> B e. V ) |
3 |
1
|
pwexd |
|- ( ph -> ~P A e. _V ) |
4 |
2
|
pwexd |
|- ( ph -> ~P B e. _V ) |
5 |
|
simprl |
|- ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> x C_ A ) |
6 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
7 |
5 6
|
sylibr |
|- ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> x e. ~P A ) |
8 |
|
simprr |
|- ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> y C_ B ) |
9 |
|
velpw |
|- ( y e. ~P B <-> y C_ B ) |
10 |
8 9
|
sylibr |
|- ( ( ph /\ ( x C_ A /\ y C_ B ) ) -> y e. ~P B ) |
11 |
3 4 7 10
|
opabex2 |
|- ( ph -> { <. x , y >. | ( x C_ A /\ y C_ B ) } e. _V ) |
12 |
|
simpl |
|- ( ( ( x C_ A /\ y C_ B ) /\ ps ) -> ( x C_ A /\ y C_ B ) ) |
13 |
12
|
ssopab2i |
|- { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } C_ { <. x , y >. | ( x C_ A /\ y C_ B ) } |
14 |
13
|
a1i |
|- ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } C_ { <. x , y >. | ( x C_ A /\ y C_ B ) } ) |
15 |
11 14
|
ssexd |
|- ( ph -> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } e. _V ) |