| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirval2lem.exa | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 2 |  | bj-imdirval2lem.exb | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 3 | 1 | pwexd | ⊢ ( 𝜑  →  𝒫  𝐴  ∈  V ) | 
						
							| 4 | 2 | pwexd | ⊢ ( 𝜑  →  𝒫  𝐵  ∈  V ) | 
						
							| 5 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) )  →  𝑥  ⊆  𝐴 ) | 
						
							| 6 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) )  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) )  →  𝑦  ⊆  𝐵 ) | 
						
							| 9 |  | velpw | ⊢ ( 𝑦  ∈  𝒫  𝐵  ↔  𝑦  ⊆  𝐵 ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) )  →  𝑦  ∈  𝒫  𝐵 ) | 
						
							| 11 | 3 4 7 10 | opabex2 | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) }  ∈  V ) | 
						
							| 12 |  | simpl | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 )  →  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) ) | 
						
							| 13 | 12 | ssopab2i | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) }  ⊆  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) } | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) }  ⊆  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 ) } ) | 
						
							| 15 | 11 14 | ssexd | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐵 )  ∧  𝜓 ) }  ∈  V ) |