Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirval2lem.exa |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
2 |
|
bj-imdirval2lem.exb |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
4 |
2
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
5 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ) → 𝑥 ⊆ 𝐴 ) |
6 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ) → 𝑥 ∈ 𝒫 𝐴 ) |
8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ) → 𝑦 ⊆ 𝐵 ) |
9 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐵 ↔ 𝑦 ⊆ 𝐵 ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ) → 𝑦 ∈ 𝒫 𝐵 ) |
11 |
3 4 7 10
|
opabex2 |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) } ∈ V ) |
12 |
|
simpl |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ) |
13 |
12
|
ssopab2i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) } |
14 |
13
|
a1i |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) } ) |
15 |
11 14
|
ssexd |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵 ) ∧ 𝜓 ) } ∈ V ) |