Metamath Proof Explorer


Theorem bj-imdirval2lem

Description: Lemma for bj-imdirval2 and bj-iminvval2 . (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-imdirval2lem.exa ( 𝜑𝐴𝑈 )
bj-imdirval2lem.exb ( 𝜑𝐵𝑉 )
Assertion bj-imdirval2lem ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ∈ V )

Proof

Step Hyp Ref Expression
1 bj-imdirval2lem.exa ( 𝜑𝐴𝑈 )
2 bj-imdirval2lem.exb ( 𝜑𝐵𝑉 )
3 1 pwexd ( 𝜑 → 𝒫 𝐴 ∈ V )
4 2 pwexd ( 𝜑 → 𝒫 𝐵 ∈ V )
5 simprl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑥𝐴 )
6 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
7 5 6 sylibr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑥 ∈ 𝒫 𝐴 )
8 simprr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑦𝐵 )
9 velpw ( 𝑦 ∈ 𝒫 𝐵𝑦𝐵 )
10 8 9 sylibr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑦 ∈ 𝒫 𝐵 )
11 3 4 7 10 opabex2 ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐵 ) } ∈ V )
12 simpl ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) → ( 𝑥𝐴𝑦𝐵 ) )
13 12 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐵 ) }
14 13 a1i ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐵 ) } )
15 11 14 ssexd ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜓 ) } ∈ V )