| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-imdiridlem.1 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 2 |
1
|
biimp3a |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) |
| 3 |
2
|
3expib |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 4 |
|
equcomi |
⊢ ( 𝑥 = 𝑦 → 𝑦 = 𝑥 ) |
| 5 |
4
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
| 6 |
5
|
biimparc |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) → 𝑦 ⊆ 𝐴 ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
| 8 |
1
|
biimpar |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝜑 ) |
| 9 |
8
|
an32s |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) ∧ 𝑦 ⊆ 𝐴 ) → 𝜑 ) |
| 10 |
7 9
|
jca |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) ) |
| 11 |
6 10
|
mpdan |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) → ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) ) |
| 12 |
11
|
ex |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝑦 → ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) ) ) |
| 13 |
3 12
|
impbid |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) |
| 14 |
13
|
pm5.32i |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) ) |
| 15 |
|
anass |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝜑 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝜑 ) ) ) |
| 16 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
| 17 |
|
vex |
⊢ 𝑦 ∈ V |
| 18 |
17
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 19 |
16 18
|
anbi12i |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝑦 ) ) |
| 20 |
14 15 19
|
3bitr4i |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 I 𝑦 ) ) |
| 21 |
20
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝜑 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 I 𝑦 ) } |
| 22 |
|
dfres2 |
⊢ ( I ↾ 𝒫 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 I 𝑦 ) } |
| 23 |
21 22
|
eqtr4i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝜑 ) } = ( I ↾ 𝒫 𝐴 ) |