Metamath Proof Explorer


Theorem bj-imdiridlem

Description: Lemma for bj-imdirid and bj-iminvid . (Contributed by BJ, 26-May-2024)

Ref Expression
Hypothesis bj-imdiridlem.1 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝜑𝑥 = 𝑦 ) )
Assertion bj-imdiridlem { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝜑 ) } = ( I ↾ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 bj-imdiridlem.1 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝜑𝑥 = 𝑦 ) )
2 1 biimp3a ( ( 𝑥𝐴𝑦𝐴𝜑 ) → 𝑥 = 𝑦 )
3 2 3expib ( 𝑥𝐴 → ( ( 𝑦𝐴𝜑 ) → 𝑥 = 𝑦 ) )
4 equcomi ( 𝑥 = 𝑦𝑦 = 𝑥 )
5 4 sseq1d ( 𝑥 = 𝑦 → ( 𝑦𝐴𝑥𝐴 ) )
6 5 biimparc ( ( 𝑥𝐴𝑥 = 𝑦 ) → 𝑦𝐴 )
7 simpr ( ( ( 𝑥𝐴𝑥 = 𝑦 ) ∧ 𝑦𝐴 ) → 𝑦𝐴 )
8 1 biimpar ( ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝜑 )
9 8 an32s ( ( ( 𝑥𝐴𝑥 = 𝑦 ) ∧ 𝑦𝐴 ) → 𝜑 )
10 7 9 jca ( ( ( 𝑥𝐴𝑥 = 𝑦 ) ∧ 𝑦𝐴 ) → ( 𝑦𝐴𝜑 ) )
11 6 10 mpdan ( ( 𝑥𝐴𝑥 = 𝑦 ) → ( 𝑦𝐴𝜑 ) )
12 11 ex ( 𝑥𝐴 → ( 𝑥 = 𝑦 → ( 𝑦𝐴𝜑 ) ) )
13 3 12 impbid ( 𝑥𝐴 → ( ( 𝑦𝐴𝜑 ) ↔ 𝑥 = 𝑦 ) )
14 13 pm5.32i ( ( 𝑥𝐴 ∧ ( 𝑦𝐴𝜑 ) ) ↔ ( 𝑥𝐴𝑥 = 𝑦 ) )
15 anass ( ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑦𝐴𝜑 ) ) )
16 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
17 vex 𝑦 ∈ V
18 17 ideq ( 𝑥 I 𝑦𝑥 = 𝑦 )
19 16 18 anbi12i ( ( 𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦 ) ↔ ( 𝑥𝐴𝑥 = 𝑦 ) )
20 14 15 19 3bitr4i ( ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦 ) )
21 20 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝜑 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦 ) }
22 dfres2 ( I ↾ 𝒫 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦 ) }
23 21 22 eqtr4i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝜑 ) } = ( I ↾ 𝒫 𝐴 )