| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdiridlem.1 | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  →  ( 𝜑  ↔  𝑥  =  𝑦 ) ) | 
						
							| 2 | 1 | biimp3a | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴  ∧  𝜑 )  →  𝑥  =  𝑦 ) | 
						
							| 3 | 2 | 3expib | ⊢ ( 𝑥  ⊆  𝐴  →  ( ( 𝑦  ⊆  𝐴  ∧  𝜑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 4 |  | equcomi | ⊢ ( 𝑥  =  𝑦  →  𝑦  =  𝑥 ) | 
						
							| 5 | 4 | sseq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑦  ⊆  𝐴  ↔  𝑥  ⊆  𝐴 ) ) | 
						
							| 6 | 5 | biimparc | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 )  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 8 | 1 | biimpar | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝑥  =  𝑦 )  →  𝜑 ) | 
						
							| 9 | 8 | an32s | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 )  ∧  𝑦  ⊆  𝐴 )  →  𝜑 ) | 
						
							| 10 | 7 9 | jca | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 )  ∧  𝑦  ⊆  𝐴 )  →  ( 𝑦  ⊆  𝐴  ∧  𝜑 ) ) | 
						
							| 11 | 6 10 | mpdan | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 )  →  ( 𝑦  ⊆  𝐴  ∧  𝜑 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝑥  =  𝑦  →  ( 𝑦  ⊆  𝐴  ∧  𝜑 ) ) ) | 
						
							| 13 | 3 12 | impbid | ⊢ ( 𝑥  ⊆  𝐴  →  ( ( 𝑦  ⊆  𝐴  ∧  𝜑 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 14 | 13 | pm5.32i | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  ( 𝑦  ⊆  𝐴  ∧  𝜑 ) )  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 ) ) | 
						
							| 15 |  | anass | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝜑 )  ↔  ( 𝑥  ⊆  𝐴  ∧  ( 𝑦  ⊆  𝐴  ∧  𝜑 ) ) ) | 
						
							| 16 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 17 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 18 | 17 | ideq | ⊢ ( 𝑥  I  𝑦  ↔  𝑥  =  𝑦 ) | 
						
							| 19 | 16 18 | anbi12i | ⊢ ( ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  I  𝑦 )  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝑦 ) ) | 
						
							| 20 | 14 15 19 | 3bitr4i | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  I  𝑦 ) ) | 
						
							| 21 | 20 | opabbii | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝜑 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  I  𝑦 ) } | 
						
							| 22 |  | dfres2 | ⊢ (  I   ↾  𝒫  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  I  𝑦 ) } | 
						
							| 23 | 21 22 | eqtr4i | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝜑 ) }  =  (  I   ↾  𝒫  𝐴 ) |